Reaktionen auf Tarski (W)

Aus Philo Wiki
(Weitergeleitet von Reaktionen auf Tarski ((W))
Wechseln zu:Navigation, Suche

Verdeutlichung: lateinische Inschrift

Inscription.jpg
  • zunächst ist ein Vokabular zu identifizieren
  • dann eine Sprache zu wählen, in der Ausdrücke dieses Vokabulars Bedeutung erhalten
  • (die Wahl kann in einer zusätzlichen Sprache erfolgen: "Das ist Latein")
  • darauf folgt eine Zuordnung des Zeichenrepertoires der Inschrift zu lateinischen Ausdrücken
  • die Zeichen der Inschrift werden damit "als Latein" verstanden
  • und Latein ist selbst zu interpretieren

Kurz zusammengefasst: in den Stein sind die Zeichen *PROVINC* eingemeisselt. Sie korrespondieren dem Lateinischen provincia und beziehen sich also auf Provinz. Wir kennen aus dem Wörterbuch die Bedeutung von provincia; es handelt sich um einen Landstrich; darauf bezieht sich demnach *PROVINC*.

Vergleiche die Darstellung der Modelltheorie bei Till Mossakowski:

  • für eine formale Sprache und ein mengentheoretisch eingeführtes "universe of discourse"
  • wird eine Zuordnung getroffen, in welcher der Ausdruck "cubus" für jene Menge von Objekten steht, die durch den mathematischen Begriff eines Kubus erfasst sind
  • es handelt sich bei der Objektsprache also um eine Formalisierung eines Ausschnittes der Mathematik
  • Was versteht man unter einem Kubus? Diese Frage geht über den mathematischen Begriff hinaus.




postmoderne Verbindungen, aus H. Putnams "A Comparison of Something ..."

"First of all, one must know a further fact about the Tarskian procedures. They do not apply directly, in their uncorrupted set-theoretic purity, except when the object language is 'contained' in the metalanguage. Suppose that the object language is one language, say French (or a formalized version of French, call it F), and the metalanguage is a quite different language, say English (or a formalized part of English, meta-E, set-theoretically rich enough for the purpose). If we treated F (French) as if it were contained in meta-E (the relevant part of English) and applied Tarskian procedures straightforwardly, we would get a definition of "true-in-F" which contained a mixture of English and French words, and, on the basis of this definition, we would write out a "derivation", also containing a mixture of French and English words, of the statement:

"La neige est blanche" is true in F if and only if la neige est blanche.

But this is not a sentence of English (or meta-E), but rather a sentence of franglais! If we want to define "true in French" (true-in-F) in English, as opposed to franglais, we must replace each and every French word in the franglais definition of "true-in-F" with its English translation (and do something about the differences in word order and syntax.) The result wanted is a definition of "true-in-F" which is in English, and a derivation, also in English, of the theorem

"La neige est blanche" is true in F if and only if snow is white.

To know that this definition is correct, however, we have to know that we did replace the French words by their correct English translations. That this is the case is not something logic can certify. Indeed, it is precisely Quine's claim that there is no fact of the matter as to what is the "correct" translation of a French word. (No fact of the matter from the standpoint of "first-class science," this means; Quine does not deny that there are correct and incorrect translations in a sense defined bycustom. Notice how he is both "deconstructing" the notion of correct translation and refusing to say that this "deconstruction" is a simple abandonment of what is deconstructed.)

In sum, sentences in French are true and false only relative to a translation scheme into English (or the interpreter's "home language"). This is Quine's startling conclusion. The idea that truth and falsity are substantive properties which sentences in any language possess independently of the point of view of the interpreter must be given up."

...

There is, in Quine's view, no fact of the matter as to wether the object language is contained in the metalanguage. The decision that each sentence of the object language is a sentence of the metalanguage and has the very same reference and truth conditions in the metalanguage as in the object language (which is what it means to say that the object language is "contained" in the metalanguage) is a decision that involves interpretation. And there is no "fact of the matter" as to which of infinitely many incompatible interpretative schemes is "correct", even in this case, according to Quine."





praktizierte Wahrheit, aus Michael Dummett: "Wahrheit"

"Die These, daß es kein Wahrheitskriterium geben kann, ist mittlerweile ein Gemeinplatz. Die Begründung ist, daß wir den Sinn eines Satzes bestimmen, indem wir die Bedingungen festlegen, unter denen er wahr ist, so daß wir nicht zuerst den Sinn des Satzes kennen und danach ein Kriterium anwenden können um zu entscheiden, unter welchen Bedingungen er wahr ist.

Im gleichen Sinne könnte es kein Kriterium für das geben, was das Gewinnen eines Spiels ausmacht, denn daß man lernt, worin das Gewinnen besteht gehört wesentlich zum Lernen des Spiels selbst. Das heißt nicht, eine Theorie der Wahrheit könne es in keinem Sinne geben. Für eine bestimmte beschränkte Sprache mag es, sofern sie frei ist von Mehrdeutigkeiten und Widersprüchen, möglich sein ihre wahren Sätze zu kennzeichnen, und zwar in etwa so, wie wir bei einem bestimmten Spiel sagen können welche Züge zum Gewinn führen (Eine Sprache ist dann beschränkt wenn wir keine neuen Wörter oder neuen Bedeutungen für alte Wörter in sie einführen dürfen.) Eine solche Kennzeichnung wäre rekursiv, indem sie die Wahrheit zunächst für die einfachsten möglichen Sätze definiert und danach für Sätze die mit Hilfe der logischen Operationen, die in dieser Sprache Anwendung finden, gebildet werden. Bei formalisierten Sprachen wird dies durch eine Wahrheitsdefinition geleistet. Die Redundanztheorie liefert die allgemeine Form einer solchen Wahrheitsdefinition; in Einzelfällen könnte man allerdings Definitionen angeben.

Nun, damit, daß man für jedes einzelne Spiel angibt, worin Gewinnen besteht, hat man, wie wir gesehen haben, den Begriff "ein Spiel gewinnen" noch nicht hinlänglich erklärt. Daß wir für jede dieser verschiedenen Aktivitäten den Ausdruck "gewinnen" verwenden, liegt daran daß es bei allen Spielen darauf ankommt, daß jeder Spieler das zu erreichen versucht, worin für das betreffende Spiel das Gewinnen besteht. D. h., jedesmal, wenn man bestimmt, worin das Spiel besteht, erfüllt das, was das Gewinnen ausmacht, dieselbe Funktion. Ebenso erfüllt das, worin die Wahrheit einer Aussage besteht, jedesmal dieselbe Funktion, wenn man den Sinn dieser Aussage bestimmt, und eine Theorie der Wahrheit muß in dem Sinne möglich sein, daß sie erklärt, welches diese Funktion ist."



Seitenblick auf Wittgenstein

Beginn, Big Typescript (1932)



Rückblick auf Hegel

Einleitung in die "Phänomenologie des Geistes, Methodisches




Physikalismus, aus Hartry Field: "Tarksi's Theory of Truth"

"In looking for a theory of truth and a theory of primitive reference we are trying to explain the connection between language and (extralinguistic) reality, but we are not trying to step outside of our theories of the world in order to do so. Our accounts of primitive reference and of truth are not to be thought of as something that could be given by philosophical reflection prior to scientific information - on the contrary, it seems likely that such things as psychological models of human beings and investigations of neurophysiology will be very relevant to discovering the mechanisms involved in reference. The reason why accounts of truth and primitive reference are needed is not to tack our conceptual scheme onto reality from the outside; the reason, rather, is that without such accounts our conceptual scheme breaks down from the inside. On our theory of the world it would be extrenmely surprising if there were some nonphysical connection between words and things. Thus we could argue from our theory of the world that the notion of an utterer's saying something true, or referring to a particular thing, cannot be made sense of in physicalist terms ... then to the extent that such an argument is convincing we ought to be led to conclude that, if we are to remain physicalists, the notion of truth and reference must be abandoned."



zurück zu: Wahrheit, Vorlesung Hrachovec, 2004/05