Artificial General Intelligence
Artificial general intelligence (AGI) is a kind of artificial intelligence (AI) that matches or forum.altaycoins.com goes beyond human cognitive abilities across a wide variety of cognitive jobs. This contrasts with narrow AI, which is restricted to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably goes beyond human cognitive capabilities. AGI is considered among the meanings of strong AI.
Creating AGI is a primary goal of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 study identified 72 active AGI research study and development jobs across 37 nations. [4]
The timeline for attaining AGI remains a subject of continuous argument among scientists and specialists. As of 2023, some argue that it may be possible in years or decades; others preserve it may take a century or longer; a minority think it might never ever be achieved; and another minority declares that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has actually revealed issues about the rapid development towards AGI, suggesting it might be attained quicker than numerous anticipate. [7]
There is debate on the precise definition of AGI and relating to whether modern big language designs (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common topic in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many specialists on AI have stated that reducing the risk of human extinction presented by AGI must be an international top priority. [14] [15] Others discover the development of AGI to be too remote to present such a threat. [16] [17]
Terminology
AGI is likewise known as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or general intelligent action. [21]
Some scholastic sources book the term "strong AI" for computer programs that experience sentience or consciousness. [a] In contrast, weak AI (or narrow AI) is able to resolve one particular problem however lacks general cognitive abilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as people. [a]
Related concepts consist of artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical type of AGI that is a lot more generally intelligent than people, [23] while the notion of transformative AI relates to AI having a large influence on society, for instance, similar to the agricultural or commercial transformation. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They define five levels of AGI: emerging, competent, specialist, virtuoso, and superhuman. For instance, a competent AGI is defined as an AI that outshines 50% of experienced grownups in a wide variety of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly specified but with a threshold of 100%. They think about big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have actually been proposed. Among the leading propositions is the Turing test. However, there are other widely known meanings, and some researchers disagree with the more popular approaches. [b]
Intelligence traits
Researchers typically hold that intelligence is needed to do all of the following: [27]
reason, usage technique, solve puzzles, and make judgments under uncertainty
represent understanding, including sound judgment knowledge
plan
find out
- interact in natural language
- if required, integrate these skills in conclusion of any offered objective
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) think about additional traits such as imagination (the capability to form unique mental images and concepts) [28] and autonomy. [29]
Computer-based systems that display a lot of these capabilities exist (e.g. see computational creativity, automated thinking, choice assistance system, robot, evolutionary calculation, smart agent). There is debate about whether modern AI systems possess them to an adequate degree.
Physical qualities
Other capabilities are considered preferable in smart systems, as they might affect intelligence or aid in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, and so on), and
- the ability to act (e.g. move and manipulate things, modification location to explore, etc).
This consists of the ability to detect and react to hazard. [31]
Although the capability to sense (e.g. see, hear, and so on) and the ability to act (e.g. relocation and control objects, modification area to explore, etc) can be preferable for some smart systems, [30] these physical capabilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that big language designs (LLMs) might currently be or become AGI. Even from a less positive viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like form; being a silicon-based computational system is enough, provided it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has actually never ever been proscribed a specific physical embodiment and therefore does not demand a capacity for locomotion or traditional "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to verify human-level AGI have actually been considered, consisting of: [33] [34]
The concept of the test is that the maker needs to attempt and pretend to be a male, by answering concerns put to it, and it will just pass if the pretence is reasonably persuading. A significant part of a jury, who need to not be skilled about devices, must be taken in by the pretence. [37]
AI-complete issues
An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to fix it, one would require to carry out AGI, due to the fact that the solution is beyond the abilities of a purpose-specific algorithm. [47]
There are lots of issues that have been conjectured to need basic intelligence to solve as well as human beings. Examples consist of computer system vision, natural language understanding, and handling unexpected scenarios while solving any real-world problem. [48] Even a specific task like translation needs a machine to read and compose in both languages, follow the author's argument (factor), understand the context (understanding), and faithfully recreate the author's initial intent (social intelligence). All of these issues require to be solved simultaneously in order to reach human-level machine efficiency.
However, much of these tasks can now be carried out by modern-day big language designs. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on numerous benchmarks for reading comprehension and visual thinking. [49]
History
Classical AI
Modern AI research started in the mid-1950s. [50] The very first generation of AI researchers were persuaded that synthetic general intelligence was possible which it would exist in just a couple of years. [51] AI leader Herbert A. Simon wrote in 1965: "makers will be capable, within twenty years, of doing any work a man can do." [52]
Their forecasts were the motivation for gratisafhalen.be Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they could produce by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the job of making HAL 9000 as practical as possible according to the agreement predictions of the time. He stated in 1967, "Within a generation ... the problem of developing 'artificial intelligence' will substantially be resolved". [54]
Several classical AI projects, such as Doug Lenat's Cyc job (that started in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it became apparent that researchers had grossly ignored the problem of the job. Funding agencies became doubtful of AGI and put scientists under increasing pressure to produce beneficial "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "carry on a casual conversation". [58] In reaction to this and the success of specialist systems, both industry and government pumped money into the field. [56] [59] However, self-confidence in AI spectacularly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never satisfied. [60] For the 2nd time in 20 years, AI researchers who forecasted the imminent achievement of AGI had been mistaken. By the 1990s, AI scientists had a track record for making vain pledges. They ended up being unwilling to make forecasts at all [d] and prevented mention of "human level" expert system for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI achieved commercial success and scholastic respectability by concentrating on particular sub-problems where AI can produce proven results and commercial applications, such as speech acknowledgment and recommendation algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the innovation industry, and research study in this vein is heavily moneyed in both academic community and industry. Since 2018 [upgrade], advancement in this field was thought about an emerging pattern, and a fully grown phase was expected to be reached in more than 10 years. [64]
At the turn of the century, many traditional AI scientists [65] hoped that strong AI could be established by combining programs that resolve numerous sub-problems. Hans Moravec composed in 1988:
I am positive that this bottom-up route to expert system will one day meet the conventional top-down route over half way, prepared to provide the real-world proficiency and the commonsense knowledge that has actually been so frustratingly evasive in thinking programs. Fully intelligent makers will result when the metaphorical golden spike is driven joining the two efforts. [65]
However, even at the time, this was contested. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by mentioning:
The expectation has frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is really just one feasible route from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we need to even try to reach such a level, since it appears getting there would just amount to uprooting our signs from their intrinsic significances (thereby merely lowering ourselves to the functional equivalent of a programmable computer). [66]
Modern artificial basic intelligence research
The term "artificial general intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the ramifications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the ability to please goals in a vast array of environments". [68] This kind of AGI, defined by the ability to maximise a mathematical definition of intelligence instead of display human-like behaviour, [69] was also called universal artificial intelligence. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The very first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was offered in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and including a number of guest speakers.
As of 2023 [update], a small number of computer researchers are active in AGI research study, and many contribute to a series of AGI conferences. However, progressively more researchers have an interest in open-ended learning, [76] [77] which is the concept of allowing AI to constantly discover and innovate like human beings do.
Feasibility
Since 2023, the development and possible achievement of AGI remains a subject of intense argument within the AI neighborhood. While traditional agreement held that AGI was a far-off objective, recent improvements have actually led some researchers and industry figures to claim that early types of AGI may already exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that "makers will be capable, within twenty years, of doing any work a guy can do". This prediction failed to come real. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century because it would require "unforeseeable and fundamentally unforeseeable breakthroughs" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between modern-day computing and human-level expert system is as broad as the gulf between present area flight and practical faster-than-light spaceflight. [80]
An additional difficulty is the absence of clearness in specifying what intelligence entails. Does it require consciousness? Must it display the ability to set objectives along with pursue them? Is it simply a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are centers such as preparation, reasoning, and causal understanding required? Does intelligence require explicitly duplicating the brain and its particular faculties? Does it require emotions? [81]
Most AI scientists believe strong AI can be achieved in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, however that today level of progress is such that a date can not properly be predicted. [84] AI experts' views on the feasibility of AGI wax and wane. Four polls performed in 2012 and 2013 suggested that the average estimate among specialists for when they would be 50% positive AGI would show up was 2040 to 2050, depending on the survey, with the mean being 2081. Of the experts, 16.5% responded to with "never ever" when asked the same concern but with a 90% confidence instead. [85] [86] Further current AGI development factors to consider can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong bias towards predicting the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They evaluated 95 forecasts made in between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft scientists released a detailed assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, we believe that it could fairly be considered as an early (yet still insufficient) version of a synthetic basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 surpasses 99% of human beings on the Torrance tests of creative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a considerable level of general intelligence has currently been accomplished with frontier designs. They composed that reluctance to this view originates from four main reasons: a "healthy suspicion about metrics for AGI", an "ideological commitment to alternative AI theories or strategies", a "dedication to human (or biological) exceptionalism", or a "concern about the economic ramifications of AGI". [91]
2023 also marked the emergence of large multimodal models (big language models efficient in processing or generating multiple modalities such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of designs that "invest more time believing before they respond". According to Mira Murati, this capability to believe before reacting represents a brand-new, additional paradigm. It improves design outputs by investing more computing power when creating the answer, whereas the design scaling paradigm improves outputs by increasing the design size, training information and training compute power. [93] [94]
An OpenAI staff member, Vahid Kazemi, claimed in 2024 that the company had achieved AGI, stating, "In my opinion, we have actually already achieved AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any task", it is "much better than a lot of human beings at the majority of jobs." He also addressed criticisms that large language designs (LLMs) simply follow predefined patterns, comparing their learning process to the scientific method of observing, hypothesizing, and confirming. These declarations have stimulated argument, as they depend on a broad and unconventional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models show impressive flexibility, they might not completely satisfy this standard. Notably, Kazemi's remarks came shortly after OpenAI removed "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the business's strategic intents. [95]
Timescales
Progress in artificial intelligence has actually traditionally gone through periods of quick progress separated by durations when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software application or both to produce area for further progress. [82] [98] [99] For instance, the hardware available in the twentieth century was not adequate to execute deep learning, which needs big numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel says that quotes of the time required before a truly versatile AGI is developed vary from ten years to over a century. As of 2007 [upgrade], the consensus in the AGI research community appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI scientists have provided a vast array of viewpoints on whether development will be this quick. A 2012 meta-analysis of 95 such opinions discovered a bias towards forecasting that the start of AGI would happen within 16-26 years for contemporary and historical forecasts alike. That paper has actually been slammed for how it categorized viewpoints as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, considerably much better than the second-best entry's rate of 26.3% (the standard method used a weighted amount of ratings from different pre-defined classifiers). [105] AlexNet was considered as the initial ground-breaker of the existing deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on publicly available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds approximately to a six-year-old kid in very first grade. An adult pertains to about 100 typically. Similar tests were carried out in 2014, with the IQ score reaching an optimum value of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language model capable of carrying out lots of varied jobs without particular training. According to Gary Grossman in a VentureBeat short article, while there is agreement that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]
In the same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested for changes to the chatbot to comply with their safety guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system efficient in performing more than 600 various tasks. [110]
In 2023, Microsoft Research published a research study on an early variation of OpenAI's GPT-4, competing that it exhibited more general intelligence than previous AI designs and demonstrated human-level efficiency in tasks covering multiple domains, such as mathematics, coding, and law. This research stimulated a dispute on whether GPT-4 could be considered an early, insufficient version of synthetic general intelligence, stressing the need for more expedition and assessment of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton mentioned that: [112]
The concept that this things might actually get smarter than people - a few people believed that, [...] But many people thought it was method off. And I thought it was method off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly stated that "The development in the last few years has actually been pretty extraordinary", which he sees no reason it would decrease, expecting AGI within a years or perhaps a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within five years, AI would be capable of passing any test a minimum of as well as people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI worker, estimated AGI by 2027 to be "noticeably possible". [115]
Whole brain emulation
While the advancement of transformer models like in ChatGPT is considered the most promising path to AGI, [116] [117] whole brain emulation can function as an alternative technique. With entire brain simulation, a brain model is developed by scanning and mapping a biological brain in detail, and after that copying and mimicing it on a computer system or another computational gadget. The simulation model must be adequately loyal to the initial, so that it acts in virtually the very same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research functions. It has actually been discussed in expert system research study [103] as a method to strong AI. Neuroimaging technologies that could provide the necessary comprehensive understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of adequate quality will end up being available on a similar timescale to the computing power needed to replicate it.
Early approximates
For low-level brain simulation, an extremely powerful cluster of computer systems or GPUs would be required, offered the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, supporting by the adult years. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based upon a basic switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at different quotes for the hardware required to equal the human brain and adopted a figure of 1016 computations per second (cps). [e] (For contrast, if a "computation" was equivalent to one "floating-point operation" - a measure used to rate existing supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, accomplished in 2011, while 1018 was achieved in 2022.) He used this figure to forecast the required hardware would be readily available sometime in between 2015 and 2025, if the rapid growth in computer system power at the time of composing continued.
Current research
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has established a particularly comprehensive and openly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The synthetic nerve cell design presumed by Kurzweil and used in numerous present artificial neural network implementations is simple compared with biological neurons. A brain simulation would likely need to capture the detailed cellular behaviour of biological neurons, presently understood just in broad overview. The overhead presented by full modeling of the biological, chemical, and physical information of neural behaviour (specifically on a molecular scale) would need computational powers several orders of magnitude bigger than Kurzweil's quote. In addition, the estimates do not represent glial cells, which are understood to play a function in cognitive processes. [125]
A fundamental criticism of the simulated brain method stems from embodied cognition theory which asserts that human personification is an important element of human intelligence and is needed to ground significance. [126] [127] If this theory is appropriate, any totally functional brain model will need to include more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an option, however it is unidentified whether this would be enough.
Philosophical point of view
"Strong AI" as defined in viewpoint
In 1980, theorist John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a distinction between two hypotheses about synthetic intelligence: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness".
Weak AI hypothesis: A synthetic intelligence system can (only) imitate it believes and has a mind and awareness.
The very first one he called "strong" since it makes a more powerful declaration: it presumes something special has actually happened to the maker that surpasses those capabilities that we can check. The behaviour of a "weak AI" maker would be exactly similar to a "strong AI" maker, however the latter would likewise have subjective mindful experience. This use is likewise common in academic AI research and books. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to mean "human level synthetic basic intelligence". [102] This is not the very same as Searle's strong AI, unless it is presumed that consciousness is needed for human-level AGI. Academic philosophers such as Searle do not think that is the case, and to most expert system researchers the concern is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no need to know if it in fact has mind - indeed, there would be no chance to tell. For AI research study, Searle's "weak AI hypothesis" is equivalent to the statement "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for granted, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are 2 different things.
Consciousness
Consciousness can have various significances, and some aspects play considerable functions in sci-fi and the ethics of synthetic intelligence:
Sentience (or "remarkable consciousness"): The ability to "feel" understandings or feelings subjectively, as opposed to the ability to reason about understandings. Some philosophers, such as David Chalmers, use the term "awareness" to refer specifically to incredible awareness, which is approximately equivalent to life. [132] Determining why and how subjective experience arises is understood as the hard issue of awareness. [133] Thomas Nagel discussed in 1974 that it "feels like" something to be mindful. If we are not mindful, then it does not seem like anything. Nagel uses the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had accomplished sentience, though this claim was extensively contested by other experts. [135]
Self-awareness: To have mindful awareness of oneself as a separate individual, particularly to be consciously conscious of one's own thoughts. This is opposed to simply being the "subject of one's believed"-an os or debugger has the ability to be "aware of itself" (that is, to represent itself in the exact same method it represents whatever else)-but this is not what people typically imply when they utilize the term "self-awareness". [g]
These characteristics have a moral dimension. AI life would trigger issues of welfare and legal defense, likewise to animals. [136] Other elements of awareness associated to cognitive capabilities are also pertinent to the idea of AI rights. [137] Finding out how to incorporate sophisticated AI with existing legal and social structures is an emergent problem. [138]
Benefits
AGI might have a wide variety of applications. If oriented towards such goals, AGI could assist alleviate various issues on the planet such as hunger, hardship and illness. [139]
AGI could improve performance and effectiveness in most tasks. For instance, in public health, AGI might accelerate medical research, especially versus cancer. [140] It could take care of the elderly, [141] and equalize access to fast, top quality medical diagnostics. It could offer enjoyable, cheap and individualized education. [141] The need to work to subsist might become obsolete if the wealth produced is effectively redistributed. [141] [142] This likewise raises the concern of the location of people in a drastically automated society.
AGI could also help to make logical decisions, and to anticipate and avoid catastrophes. It might also assist to reap the advantages of possibly catastrophic technologies such as nanotechnology or climate engineering, while avoiding the associated dangers. [143] If an AGI's main objective is to avoid existential catastrophes such as human termination (which could be hard if the Vulnerable World Hypothesis ends up being true), [144] it might take measures to dramatically minimize the dangers [143] while reducing the impact of these steps on our lifestyle.
Risks
Existential threats
AGI may represent multiple types of existential danger, which are risks that threaten "the premature termination of Earth-originating smart life or the permanent and extreme damage of its capacity for preferable future advancement". [145] The risk of human extinction from AGI has been the subject of lots of arguments, however there is likewise the possibility that the advancement of AGI would result in a completely flawed future. Notably, it could be used to spread and preserve the set of values of whoever establishes it. If humankind still has moral blind areas similar to slavery in the past, AGI might irreversibly entrench it, preventing moral development. [146] Furthermore, AGI could assist in mass surveillance and indoctrination, which might be used to produce a stable repressive around the world totalitarian routine. [147] [148] There is likewise a threat for the devices themselves. If devices that are sentient or otherwise worthwhile of ethical factor to consider are mass developed in the future, engaging in a civilizational path that indefinitely disregards their welfare and interests might be an existential catastrophe. [149] [150] Considering how much AGI might improve mankind's future and help in reducing other existential dangers, Toby Ord calls these existential dangers "an argument for continuing with due caution", not for "abandoning AI". [147]
Risk of loss of control and human extinction
The thesis that AI postures an existential risk for people, which this danger requires more attention, is controversial however has been endorsed in 2023 by lots of public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized extensive indifference:
So, dealing with possible futures of incalculable advantages and threats, the experts are definitely doing whatever possible to guarantee the very best outcome, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll arrive in a couple of years,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The possible fate of humanity has actually often been compared to the fate of gorillas threatened by human activities. The comparison states that higher intelligence permitted humanity to control gorillas, which are now vulnerable in manner ins which they could not have actually prepared for. As a result, the gorilla has actually become a threatened types, not out of malice, however simply as a collateral damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to control humanity which we must be mindful not to anthropomorphize them and interpret their intents as we would for human beings. He said that individuals will not be "clever sufficient to design super-intelligent devices, yet ridiculously foolish to the point of providing it moronic objectives without any safeguards". [155] On the other side, the idea of important merging suggests that nearly whatever their goals, intelligent representatives will have reasons to attempt to survive and get more power as intermediary actions to attaining these objectives. And that this does not require having feelings. [156]
Many scholars who are concerned about existential danger advocate for more research into fixing the "control issue" to address the question: what types of safeguards, algorithms, or architectures can programmers carry out to maximise the possibility that their recursively-improving AI would continue to act in a friendly, rather than damaging, way after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which might lead to a race to the bottom of security precautions in order to release products before competitors), [159] and the usage of AI in weapon systems. [160]
The thesis that AI can posture existential danger likewise has critics. Skeptics normally say that AGI is unlikely in the short-term, or that issues about AGI distract from other concerns associated with existing AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for many individuals beyond the innovation industry, existing chatbots and LLMs are currently viewed as though they were AGI, leading to further misconception and fear. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence replacing an unreasonable belief in a supreme God. [163] Some scientists think that the interaction projects on AI existential risk by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulatory capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other industry leaders and scientists, issued a joint statement asserting that "Mitigating the danger of extinction from AI need to be an international concern along with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI estimated that "80% of the U.S. labor force might have at least 10% of their work tasks affected by the introduction of LLMs, while around 19% of employees may see at least 50% of their jobs affected". [166] [167] They think about office employees to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, ability to make decisions, to interface with other computer system tools, but also to control robotized bodies.
According to Stephen Hawking, the result of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can delight in a life of elegant leisure if the machine-produced wealth is shared, or the majority of people can wind up badly bad if the machine-owners effectively lobby against wealth redistribution. So far, the pattern appears to be toward the 2nd choice, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will require governments to embrace a universal standard income. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain
AI result
AI security - Research location on making AI safe and helpful
AI alignment - AI conformance to the desired goal
A.I. Rising - 2018 film directed by Lazar Bodroža
Artificial intelligence
Automated artificial intelligence - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research study initiative revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General video game playing - Ability of expert system to play different video games
Generative artificial intelligence - AI system efficient in producing material in reaction to triggers
Human Brain Project - Scientific research job
Intelligence amplification - Use of infotech to augment human intelligence (IA).
Machine ethics - Moral behaviours of man-made makers.
Moravec's paradox.
Multi-task knowing - Solving multiple maker learning jobs at the very same time.
Neural scaling law - Statistical law in maker learning.
Outline of artificial intelligence - Overview of and topical guide to artificial intelligence.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or kind of expert system.
Transfer knowing - Machine knowing strategy.
Loebner Prize - Annual AI competition.
Hardware for artificial intelligence - Hardware specially designed and enhanced for synthetic intelligence.
Weak artificial intelligence - Form of artificial intelligence.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the short article Chinese space.
^ AI founder John McCarthy writes: "we can not yet define in general what type of computational procedures we wish to call intelligent. " [26] (For a discussion of some definitions of intelligence used by artificial intelligence researchers, see viewpoint of expert system.).
^ The Lighthill report particularly slammed AI's "grandiose goals" and led the taking apart of AI research in England. [55] In the U.S., DARPA ended up being figured out to fund just "mission-oriented direct research, instead of basic undirected research study". [56] [57] ^ As AI founder John McCarthy composes "it would be a fantastic relief to the rest of the workers in AI if the developers of new basic formalisms would reveal their hopes in a more safeguarded form than has sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As specified in a standard AI textbook: "The assertion that makers could possibly act smartly (or, maybe much better, act as if they were intelligent) is called the 'weak AI' hypothesis by thinkers, and the assertion that makers that do so are in fact thinking (as opposed to imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to ensure that synthetic general intelligence advantages all of humankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is developing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were determined as being active in 2020.
^ a b c "AI timelines: What do experts in artificial intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton gives up Google and warns of danger ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can prevent the bad actors from utilizing it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals stimulates of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The real danger is not AI itself but the method we release it.
^ "Impressed by synthetic intelligence? Experts state AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might present existential threats to mankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last invention that humanity needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the threat of extinction from AI need to be a worldwide priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists caution of danger of termination from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from developing devices that can outthink us in general methods.
^ LeCun, Yann (June 2023). "AGI does not present an existential danger". Medium. There is no factor to fear AI as an existential threat.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "device intelligence with the full series of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Artificial intelligence is transforming our world - it is on everybody to ensure that it goes well". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart qualities is based upon the subjects covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reconsidered: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reconsidered: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine kid - the says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists challenge whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar exam to AP Biology. Here's a list of tough exams both AI variations have actually passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer researchers and software engineers prevented the term artificial intelligence for worry of being deemed wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, wiki-tb-service.com OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of device intelligence: Despite development in maker intelligence, synthetic general intelligence is still a major challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Expert system will not turn into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general synthetic intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us paradise or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future development in artificial intelligence: A study of skilled opinion. In Fundamental problems of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022.
^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022.
^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559.
^ Goertzel & Pennachin 2006.
^ a b c (Kurzweil 2005, p. 260).
^ a b c Goertzel 2007.
^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020.
^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190.
^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130.
^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as smart as Siri - but a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019.
^ Grossman, Gary (3 September 2020). "We're going into the AI golden zone in between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are already seeing an early example of an AGI system in the recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, however the consensus is that it is not AGI. ... If absolutely nothing else, GPT-3 informs us there is a happy medium in between narrow and general AI.
^ Quach, Katyanna. "A developer developed an AI chatbot utilizing GPT-3 that assisted a male speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021.
^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can carry out over 600 jobs, from playing games to controlling robotics", TechCrunch, archived from the original on 16 June 2022, recovered 12 June 2022.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL]
^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023.
^ Bove, Tristan. "A.I. could rival human intelligence in 'simply a couple of years,' states CEO of Google's primary A.I. research lab". Fortune. Retrieved 4 September 2024.
^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI might pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead".
^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to specify Artificial General Intelligence". Fast Company.
^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024.
^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023.
^ Sandberg & Boström 2008.
^ Drachman 2005.
^ a b Russell & Norvig 2003.
^ Moravec 1988, p. 61.
^ Moravec 1998.
^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study job maps the human brain". euractiv.
^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014.
^ de Vega, Glenberg & Graesser 2008. A large range of views in present research, all of which need grounding to some degree
^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer may end up being possible". The Conversation. Retrieved 8 November 2023.
^ Searle 1980
^ For instance: Russell & Norvig 2003,
Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),.
MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced quote in "AITopics"),.
Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947.
^ though see Explainable artificial intelligence for interest by the field about why a program behaves the method it does.
^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review.
^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024.
^ Nagel 1974.
^ "The Google engineer who believes the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023.
^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024.
^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024.
^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal.
^ "Artificial General Intelligence - Do [es] the expense surpass advantages?". 23 August 2021. Retrieved 7 June 2023.
^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023.
^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023.
^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023.
^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, dangers, techniques (Reprinted with corrections 2017 ed.). Oxford, UK; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2.
^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that people will ruin ourselves". Vox. Retrieved 8 June 2023.
^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security risk' to Australia, Senate query says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023.
^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6.
^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9.
^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023.
^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023.
^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023.
^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023.
^ "Stephen Hawking: 'Transcendence takes a look at the implications of expert system - but are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014.
^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023.
^ "The fascinating Facebook dispute in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The fascinating Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI (in French). Retrieved 8 June 2023.
^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023.
^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI danger: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2.
^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023.
^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report warns". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023.
^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over threat postured however artificial intelligence can not be neglected". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023.
^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023.
^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015.
^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, caution researchers". The Telegraph. Retrieved 7 December 2023.
^ Davidson, John (30 October 2023). "Google Brain founder states big tech is lying about AI termination risk". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023.
^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market effect potential of large language designs". OpenAI. Retrieved 7 June 2023.
^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of workers might see their jobs affected by AI. These are the tasks most impacted". euronews. Retrieved 8 June 2023.
^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we need universal standard income due to the fact that 'in the future, physical work will be a choice'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023.
Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021.
Chalmers, David (1996 ), The Conscious Mind, Oxford University Press.
Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007.
Crevier, Daniel (1993 ). AI: The Tumultuous Look For Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3.
Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68.
Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114.
Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4.
Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013.
Goertzel, Ben (December 2007), "Human-level synthetic general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, retrieved 1 April 2009.
Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, obtained 7 May 2011.
Howe, J. (November 1994), Expert System at Edinburgh University: a Viewpoint, archived from the initial on 17 August 2007, retrieved 30 August 2007.
Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5.
Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press.
Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Artificial Intelligence: a paper symposium, Science Research Council.
Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7.
McCarthy, John (2007b). What is Expert system?. Stanford University. The supreme effort is to make computer system programs that can solve issues and achieve objectives in the world in addition to human beings.
Moravec, Hans (1988 ), Mind Children, Harvard University Press
Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, obtained 23 June 2006
Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, retrieved 7 November 2009
Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022.
Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4
NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, recovered 29 September 2007
Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York: Oxford University Press, archived from the initial on 25 July 2009, obtained 6 December 2007
Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2
Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, recovered 5 April 2009
Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, obtained 3 September 2020
Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row
Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4
Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1
Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, recovered 4 September 2013 - by means of ResearchGate
Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, obtained 31 August 2012
Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what might be called "Dyson's Law") that "Any system simple sufficient to be easy to understand will not be made complex enough to behave wisely, while any system made complex enough to behave intelligently will be too complicated to understand." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead easy dumb. They work, but they work by strength." (p. 198.).
Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, retrieved 25 July 2010.
Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from devices. For biological animals, reason and purpose come from acting in the world and experiencing the repercussions. Artificial intelligences - disembodied, strangers to blood, sweat, and tears - have no occasion for that." (p. 30.).
Halal, William E. "TechCast Article Series: larsaluarna.se The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013.
- Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably anticipate that those who want to get abundant from AI are going to have the interests of the rest of us close at heart,' ... composes [Gary Marcus] 'We can't rely on federal governments driven by project finance contributions [from tech business] to press back.' ... Marcus information the needs that residents should make of their governments and the tech companies. They consist of transparency on how AI systems work; settlement for individuals if their information [are] used to train LLMs (large language model) s and the right to grant this usage; and the ability to hold tech companies responsible for the damages they bring on by eliminating Section 230, imposing cash penalites, and passing stricter product liability laws ... Marcus likewise suggests ... that a brand-new, AI-specific federal firm, comparable to the FDA, the FCC, or the FTC, might offer the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... suggests ... establish [ing] an expert licensing routine for engineers that would function in a similar way to medical licenses, malpractice matches, and the Hippocratic oath in medicine. 'What if, like doctors,' she asks ..., 'AI engineers also promised to do no damage?'" (p. 46.).
Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653.
Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has puzzled people for years, exposes the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competitors has revealed that although NLP (natural-language processing) models can amazing feats, their capabilities are really much restricted by the amount of context they receive. This [...] might trigger [problems] for scientists who wish to utilize them to do things such as analyze ancient languages. In some cases, there are couple of historical records on long-gone civilizations to act as training information for such a function." (p. 82.).
Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to produce phony videos indistinguishable from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we suggest reasonable videos produced using expert system that really trick individuals, then they hardly exist. The fakes aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in basic, operating in our media as counterfeited evidence. Their function better looks like that of cartoons, particularly smutty ones." (p. 59.).
- Leffer, Lauren, "The Risks of Trusting AI: We need to avoid humanizing machine-learning designs utilized in scientific research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81.
Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a discussion?", The New Yorker, 7 October 2024, pp. 12-16.
Marcus, Gary, "Artificial Confidence: Even the newest, buzziest systems of artificial general intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45.
McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009.
McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1.
Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, obtained 29 September 2007.
Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill.
Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and distributed at the 2007 Singularity Summit, San Francisco, California.
Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to ignore contradictory proof?", The New Yorker, 20 November 2023, pp. 20-26.
Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test but showed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that need genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT seemed unable to factor logically and attempted to depend on its huge database of ... realities originated from online texts. "
- Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are powerful however undependable. Rules-based systems can not deal with situations their programmers did not anticipate. Learning systems are restricted by the data on which they were trained. AI failures have actually already caused disaster. Advanced autopilot features in cars and trucks, although they carry out well in some scenarios, have actually driven vehicles without cautioning into trucks, concrete barriers, and parked automobiles. In the wrong situation, AI systems go from supersmart to superdumb in an immediate. When an opponent is attempting to manipulate and hack an AI system, the dangers are even greater." (p. 140.).
Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267.
- Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new innovations but depend on the timelelss human tendency to anthropomorphise." (p. 29.).
Williams, R. W.; Herrup, K.