Artificial General Intelligence

Aus Philo Wiki
Version vom 2. Februar 2025, 12:33 Uhr von JorjaSpark8918 (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „<br>Artificial general intelligence (AGI) is a kind of expert system ([https://oriportimpex.com/ AI]) that matches or surpasses human cognitive capabilities ac…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche


Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or surpasses human cognitive capabilities across a large variety of cognitive tasks. This contrasts with narrow AI, which is limited to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that greatly exceeds human cognitive abilities. AGI is thought about one of the definitions of strong AI.


Creating AGI is a main goal of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 survey determined 72 active AGI research study and advancement projects across 37 nations. [4]

The timeline for achieving AGI stays a subject of ongoing argument amongst researchers and specialists. As of 2023, some argue that it may be possible in years or years; others preserve it might take a century or longer; a minority believe it may never ever be attained; and another minority declares that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has expressed issues about the rapid development towards AGI, recommending it might be attained quicker than lots of anticipate. [7]

There is debate on the exact definition of AGI and regarding whether contemporary big language designs (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a common subject in science fiction and futures studies. [9] [10]

Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many experts on AI have actually stated that mitigating the risk of human termination posed by AGI ought to be a worldwide top priority. [14] [15] Others discover the development of AGI to be too remote to provide such a risk. [16] [17]

Terminology


AGI is likewise known as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or basic intelligent action. [21]

Some academic sources reserve the term "strong AI" for computer programs that experience life or awareness. [a] On the other hand, weak AI (or narrow AI) is able to solve one specific issue however does not have general cognitive abilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the very same sense as people. [a]

Related principles consist of synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical type of AGI that is much more typically smart than people, [23] while the idea of transformative AI relates to AI having a large effect on society, for example, similar to the agricultural or commercial transformation. [24]

A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They define five levels of AGI: emerging, qualified, expert, virtuoso, and superhuman. For example, a proficient AGI is defined as an AI that exceeds 50% of proficient adults in a wide variety of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is similarly specified however with a threshold of 100%. They think about big language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]

Characteristics


Various popular definitions of intelligence have been proposed. Among the leading proposals is the Turing test. However, there are other popular definitions, and some scientists disagree with the more popular approaches. [b]

Intelligence qualities


Researchers usually hold that intelligence is needed to do all of the following: [27]

reason, usage technique, resolve puzzles, and make judgments under uncertainty
represent understanding, consisting of typical sense understanding
plan
discover
- communicate in natural language
- if necessary, incorporate these skills in conclusion of any provided objective


Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and choice making) think about extra qualities such as imagination (the capability to form novel psychological images and concepts) [28] and autonomy. [29]

Computer-based systems that show a lot of these abilities exist (e.g. see computational imagination, automated reasoning, choice support group, robot, evolutionary computation, smart representative). There is debate about whether modern AI systems possess them to an adequate degree.


Physical qualities


Other abilities are considered desirable in smart systems, as they might impact intelligence or help in its expression. These consist of: [30]

- the ability to sense (e.g. see, hear, etc), and
- the ability to act (e.g. move and manipulate things, modification place to explore, and so on).


This includes the capability to spot and respond to hazard. [31]

Although the capability to sense (e.g. see, hear, and so on) and the capability to act (e.g. move and manipulate things, change place to check out, etc) can be preferable for some smart systems, [30] these physical capabilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that big language designs (LLMs) may already be or become AGI. Even from a less positive viewpoint on LLMs, there is no company requirement for an AGI to have a human-like kind; being a silicon-based computational system suffices, provided it can process input (language) from the external world in place of human senses. This interpretation lines up with the understanding that AGI has actually never ever been proscribed a specific physical embodiment and hence does not demand a capacity for oke.zone locomotion or standard "eyes and ears". [32]

Tests for human-level AGI


Several tests suggested to verify human-level AGI have been considered, consisting of: [33] [34]

The idea of the test is that the machine has to try and gratisafhalen.be pretend to be a male, by answering concerns put to it, and it will only pass if the pretence is reasonably persuading. A considerable part of a jury, who ought to not be professional about makers, need to be taken in by the pretence. [37]

AI-complete issues


An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to resolve it, one would need to execute AGI, due to the fact that the solution is beyond the capabilities of a purpose-specific algorithm. [47]

There are lots of problems that have been conjectured to require general intelligence to solve in addition to humans. Examples consist of computer system vision, natural language understanding, and handling unanticipated scenarios while resolving any real-world problem. [48] Even a specific job like translation needs a maker to check out and compose in both languages, follow the author's argument (reason), comprehend the context (understanding), and consistently replicate the author's initial intent (social intelligence). All of these issues need to be solved simultaneously in order to reach human-level device performance.


However, a lot of these tasks can now be performed by modern-day large language models. According to Stanford University's 2024 AI index, AI has reached human-level performance on lots of criteria for reading understanding and visual thinking. [49]

History


Classical AI


Modern AI research started in the mid-1950s. [50] The first generation of AI researchers were persuaded that synthetic general intelligence was possible which it would exist in just a few years. [51] AI pioneer Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a guy can do." [52]

Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they might develop by the year 2001. AI pioneer Marvin Minsky was a consultant [53] on the task of making HAL 9000 as reasonable as possible according to the agreement predictions of the time. He said in 1967, "Within a generation ... the problem of producing 'expert system' will significantly be resolved". [54]

Several classical AI projects, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar project, were directed at AGI.


However, in the early 1970s, it ended up being apparent that researchers had actually grossly ignored the problem of the job. Funding companies became skeptical of AGI and put researchers under increasing pressure to produce helpful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "continue a table talk". [58] In reaction to this and the success of specialist systems, both industry and federal government pumped money into the field. [56] [59] However, confidence in AI spectacularly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever fulfilled. [60] For the second time in 20 years, AI scientists who anticipated the impending accomplishment of AGI had been misinterpreted. By the 1990s, AI scientists had a credibility for making vain promises. They ended up being hesitant to make forecasts at all [d] and prevented reference of "human level" expert system for worry of being identified "wild-eyed dreamer [s]. [62]

Narrow AI research study


In the 1990s and early 21st century, mainstream AI attained industrial success and scholastic respectability by concentrating on particular sub-problems where AI can produce proven results and business applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now used thoroughly throughout the innovation market, and research in this vein is heavily moneyed in both academia and industry. Since 2018 [update], advancement in this field was thought about an emerging pattern, and a mature stage was expected to be reached in more than ten years. [64]

At the turn of the century, lots of mainstream AI researchers [65] hoped that strong AI might be developed by combining programs that fix different sub-problems. Hans Moravec composed in 1988:


I am positive that this bottom-up route to synthetic intelligence will one day satisfy the traditional top-down route majority way, all set to supply the real-world skills and the commonsense understanding that has actually been so frustratingly evasive in thinking programs. Fully smart devices will result when the metaphorical golden spike is driven joining the two efforts. [65]

However, even at the time, this was disputed. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:


The expectation has frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper are valid, then this expectation is hopelessly modular and there is truly just one feasible path from sense to symbols: from the ground up. A free-floating symbolic level like the software application level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we need to even try to reach such a level, given that it looks as if arriving would just total up to uprooting our symbols from their intrinsic meanings (thus merely minimizing ourselves to the functional equivalent of a programmable computer). [66]

Modern artificial general intelligence research


The term "synthetic basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the ability to please objectives in a wide variety of environments". [68] This type of AGI, characterized by the ability to maximise a mathematical meaning of intelligence rather than show human-like behaviour, [69] was likewise called universal synthetic intelligence. [70]

The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The very first summer school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and featuring a variety of visitor lecturers.


Since 2023 [upgrade], a little number of computer scientists are active in AGI research study, and lots of contribute to a series of AGI conferences. However, progressively more researchers have an interest in open-ended learning, [76] [77] which is the concept of enabling AI to continually find out and innovate like humans do.


Feasibility


Since 2023, the advancement and prospective achievement of AGI remains a subject of extreme argument within the AI neighborhood. While standard agreement held that AGI was a distant goal, current advancements have actually led some researchers and market figures to declare that early types of AGI may already exist. [78] AI leader Herbert A. Simon speculated in 1965 that "machines will be capable, within twenty years, of doing any work a guy can do". This prediction stopped working to come true. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century due to the fact that it would require "unforeseeable and essentially unpredictable breakthroughs" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between modern computing and human-level expert system is as broad as the gulf between current area flight and useful faster-than-light spaceflight. [80]

An additional obstacle is the lack of clarity in specifying what intelligence entails. Does it require consciousness? Must it show the capability to set goals as well as pursue them? Is it purely a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are facilities such as planning, thinking, and causal understanding required? Does intelligence need explicitly replicating the brain and its particular faculties? Does it need emotions? [81]

Most AI researchers think strong AI can be achieved in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of achieving strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be accomplished, however that the present level of progress is such that a date can not properly be forecasted. [84] AI professionals' views on the feasibility of AGI wax and subside. Four polls conducted in 2012 and 2013 recommended that the median price quote among professionals for when they would be 50% confident AGI would get here was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the experts, 16.5% responded to with "never" when asked the exact same concern but with a 90% confidence instead. [85] [86] Further existing AGI progress factors to consider can be discovered above Tests for verifying human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong bias towards forecasting the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They evaluated 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]

In 2023, Microsoft researchers published an in-depth examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we think that it could fairly be deemed an early (yet still incomplete) variation of an artificial general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outshines 99% of humans on the Torrance tests of innovative thinking. [89] [90]

Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a considerable level of general intelligence has actually currently been attained with frontier designs. They wrote that hesitation to this view comes from 4 main factors: a "healthy apprehension about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "commitment to human (or biological) exceptionalism", or a "concern about the financial ramifications of AGI". [91]

2023 also marked the introduction of large multimodal designs (large language models capable of processing or creating numerous techniques such as text, audio, and images). [92]

In 2024, OpenAI launched o1-preview, the first of a series of designs that "spend more time believing before they respond". According to Mira Murati, this capability to believe before responding represents a new, extra paradigm. It improves design outputs by investing more computing power when creating the response, whereas the model scaling paradigm enhances outputs by increasing the model size, training information and training compute power. [93] [94]

An OpenAI employee, Vahid Kazemi, declared in 2024 that the company had actually accomplished AGI, stating, "In my opinion, we have already accomplished AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any task", it is "better than the majority of human beings at many tasks." He also resolved criticisms that large language models (LLMs) simply follow predefined patterns, comparing their knowing procedure to the clinical approach of observing, assuming, and confirming. These statements have actually triggered debate, as they depend on a broad and unconventional meaning of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs demonstrate impressive versatility, they may not fully satisfy this standard. Notably, Kazemi's comments came quickly after OpenAI removed "AGI" from the regards to its partnership with Microsoft, triggering speculation about the business's tactical intentions. [95]

Timescales


Progress in expert system has actually historically gone through periods of fast progress separated by durations when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software application or both to create space for more progress. [82] [98] [99] For instance, the hardware available in the twentieth century was not adequate to carry out deep learning, which needs great deals of GPU-enabled CPUs. [100]

In the introduction to his 2006 book, [101] Goertzel states that price quotes of the time required before a really versatile AGI is built differ from ten years to over a century. As of 2007 [upgrade], the agreement in the AGI research study community seemed to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI scientists have given a vast array of viewpoints on whether progress will be this rapid. A 2012 meta-analysis of 95 such viewpoints found a bias towards anticipating that the beginning of AGI would occur within 16-26 years for contemporary and historical forecasts alike. That paper has actually been criticized for how it categorized opinions as specialist or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, significantly better than the second-best entry's rate of 26.3% (the traditional method used a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was considered as the initial ground-breaker of the current deep knowing wave. [105]

In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly offered and freely available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old child in very first grade. An adult pertains to about 100 usually. Similar tests were performed in 2014, with the IQ rating reaching an optimum worth of 27. [106] [107]

In 2020, OpenAI developed GPT-3, a language design capable of performing numerous varied jobs without particular training. According to Gary Grossman in a VentureBeat short article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]

In the very same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested changes to the chatbot to comply with their security standards; Rohrer disconnected Project December from the GPT-3 API. [109]

In 2022, DeepMind developed Gato, a "general-purpose" system capable of carrying out more than 600 various tasks. [110]

In 2023, Microsoft Research published a study on an early variation of OpenAI's GPT-4, contending that it exhibited more general intelligence than previous AI models and showed human-level efficiency in tasks covering numerous domains, such as mathematics, coding, and law. This research study sparked an argument on whether GPT-4 could be considered an early, insufficient variation of artificial general intelligence, emphasizing the requirement for more exploration and examination of such systems. [111]

In 2023, the AI scientist Geoffrey Hinton mentioned that: [112]

The idea that this things might in fact get smarter than individuals - a couple of individuals thought that, [...] But the majority of people thought it was way off. And I believed it was method off. I thought it was 30 to 50 years or even longer away. Obviously, I no longer believe that.


In May 2023, Demis Hassabis similarly stated that "The development in the last few years has actually been quite incredible", and that he sees no reason it would decrease, anticipating AGI within a decade and even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within five years, AI would be capable of passing any test a minimum of along with people. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a former OpenAI worker, approximated AGI by 2027 to be "strikingly possible". [115]

Whole brain emulation


While the advancement of transformer designs like in ChatGPT is considered the most promising course to AGI, [116] [117] whole brain emulation can act as an alternative method. With whole brain simulation, a brain model is built by scanning and mapping a biological brain in information, and then copying and replicating it on a computer system or another computational gadget. The simulation model must be sufficiently loyal to the original, so that it behaves in almost the very same way as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research functions. It has actually been talked about in expert system research [103] as a technique to strong AI. Neuroimaging innovations that might deliver the necessary in-depth understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of adequate quality will end up being offered on a similar timescale to the computing power needed to emulate it.


Early approximates


For low-level brain simulation, an extremely powerful cluster of computers or GPUs would be required, given the huge amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by their adult years. Estimates vary for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based on a simple switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil looked at different price quotes for the hardware needed to equate to the human brain and adopted a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "calculation" was comparable to one "floating-point operation" - a procedure used to rate present supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, attained in 2011, while 1018 was achieved in 2022.) He utilized this figure to forecast the essential hardware would be offered at some point between 2015 and 2025, if the exponential growth in computer power at the time of composing continued.


Current research


The Human Brain Project, an EU-funded effort active from 2013 to 2023, has developed a particularly detailed and publicly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.


Criticisms of simulation-based techniques


The synthetic neuron model presumed by Kurzweil and utilized in many existing artificial neural network executions is basic compared with biological nerve cells. A brain simulation would likely need to capture the in-depth cellular behaviour of biological nerve cells, presently understood just in broad summary. The overhead introduced by complete modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would need computational powers numerous orders of magnitude bigger than Kurzweil's quote. In addition, the estimates do not account for glial cells, which are understood to play a role in cognitive processes. [125]

A fundamental criticism of the simulated brain method originates from embodied cognition theory which asserts that human embodiment is an important element of human intelligence and is essential to ground significance. [126] [127] If this theory is correct, any fully practical brain model will need to encompass more than just the neurons (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an alternative, however it is unidentified whether this would be sufficient.


Philosophical viewpoint


"Strong AI" as specified in approach


In 1980, theorist John Searle created the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference in between 2 hypotheses about artificial intelligence: [f]

Strong AI hypothesis: An artificial intelligence system can have "a mind" and "consciousness".
Weak AI hypothesis: An expert system system can (only) act like it believes and has a mind and awareness.


The first one he called "strong" since it makes a more powerful declaration: it presumes something unique has actually taken place to the device that goes beyond those capabilities that we can evaluate. The behaviour of a "weak AI" machine would be specifically similar to a "strong AI" maker, however the latter would likewise have subjective conscious experience. This usage is likewise common in academic AI research and textbooks. [129]

In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to indicate "human level synthetic general intelligence". [102] This is not the same as Searle's strong AI, unless it is presumed that awareness is necessary for human-level AGI. Academic theorists such as Searle do not believe that is the case, and to most expert system researchers the question is out-of-scope. [130]

Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to know if it actually has mind - certainly, there would be no other way to tell. For AI research, Searle's "weak AI hypothesis" is comparable to the declaration "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for granted, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are two different things.


Consciousness


Consciousness can have different meanings, and some elements play substantial functions in science fiction and the principles of expert system:


Sentience (or "extraordinary consciousness"): The ability to "feel" understandings or feelings subjectively, instead of the ability to factor about understandings. Some thinkers, such as David Chalmers, use the term "consciousness" to refer specifically to phenomenal consciousness, which is roughly equivalent to sentience. [132] Determining why and how subjective experience develops is understood as the tough problem of consciousness. [133] Thomas Nagel described in 1974 that it "seems like" something to be conscious. If we are not mindful, then it doesn't feel like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had actually accomplished life, though this claim was extensively contested by other professionals. [135]

Self-awareness: To have mindful awareness of oneself as a different individual, especially to be purposely familiar with one's own ideas. This is opposed to just being the "topic of one's thought"-an os or debugger is able to be "aware of itself" (that is, to represent itself in the same way it represents everything else)-however this is not what individuals typically indicate when they use the term "self-awareness". [g]

These qualities have an ethical measurement. AI life would trigger issues of welfare and legal security, similarly to animals. [136] Other aspects of consciousness related to cognitive capabilities are likewise relevant to the principle of AI rights. [137] Finding out how to integrate sophisticated AI with existing legal and social frameworks is an emergent issue. [138]

Benefits


AGI could have a wide array of applications. If oriented towards such objectives, AGI might help mitigate numerous problems in the world such as cravings, poverty and illness. [139]

AGI might enhance efficiency and efficiency in most jobs. For example, in public health, AGI could accelerate medical research, significantly versus cancer. [140] It could take care of the elderly, [141] and democratize access to fast, high-quality medical diagnostics. It might provide fun, inexpensive and personalized education. [141] The need to work to subsist could become outdated if the wealth produced is correctly rearranged. [141] [142] This also raises the question of the place of humans in a significantly automated society.


AGI might also help to make reasonable decisions, and to expect and avoid catastrophes. It might likewise assist to profit of potentially devastating technologies such as nanotechnology or environment engineering, while avoiding the associated risks. [143] If an AGI's primary goal is to avoid existential catastrophes such as human extinction (which could be tough if the Vulnerable World Hypothesis ends up being real), [144] it could take procedures to significantly minimize the threats [143] while decreasing the impact of these procedures on our lifestyle.


Risks


Existential risks


AGI might represent multiple types of existential risk, which are dangers that threaten "the early termination of Earth-originating intelligent life or the permanent and extreme damage of its capacity for preferable future advancement". [145] The danger of human extinction from AGI has been the subject of many debates, but there is likewise the possibility that the advancement of AGI would lead to a completely problematic future. Notably, it could be utilized to spread and maintain the set of worths of whoever develops it. If humanity still has moral blind spots comparable to slavery in the past, AGI might irreversibly entrench it, preventing ethical development. [146] Furthermore, AGI might assist in mass security and brainwashing, which might be used to create a steady repressive worldwide totalitarian regime. [147] [148] There is likewise a risk for the makers themselves. If makers that are sentient or otherwise worthy of ethical consideration are mass produced in the future, taking part in a civilizational course that indefinitely overlooks their well-being and interests might be an existential disaster. [149] [150] Considering how much AGI might improve humanity's future and help in reducing other existential dangers, Toby Ord calls these existential threats "an argument for continuing with due caution", not for "deserting AI". [147]

Risk of loss of control and human extinction


The thesis that AI presents an existential threat for human beings, and that this danger needs more attention, is questionable however has actually been endorsed in 2023 by many public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking slammed extensive indifference:


So, dealing with possible futures of enormous advantages and threats, the experts are definitely doing whatever possible to guarantee the very best outcome, right? Wrong. If a remarkable alien civilisation sent us a message stating, 'We'll show up in a few years,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]

The possible fate of humanity has in some cases been compared to the fate of gorillas threatened by human activities. The contrast states that greater intelligence permitted humanity to dominate gorillas, which are now susceptible in manner ins which they might not have anticipated. As an outcome, the gorilla has ended up being an endangered species, not out of malice, but just as a collateral damage from human activities. [154]

The skeptic Yann LeCun considers that AGIs will have no desire to dominate humanity and that we must be mindful not to anthropomorphize them and interpret their intents as we would for humans. He stated that people won't be "wise enough to develop super-intelligent makers, yet extremely foolish to the point of giving it moronic objectives without any safeguards". [155] On the other side, the idea of important convergence suggests that practically whatever their goals, intelligent representatives will have factors to try to make it through and get more power as intermediary actions to achieving these goals. Which this does not need having feelings. [156]

Many scholars who are concerned about existential danger advocate for more research study into fixing the "control problem" to respond to the concern: what types of safeguards, algorithms, or architectures can programmers carry out to maximise the probability that their recursively-improving AI would continue to behave in a friendly, rather than harmful, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which might cause a race to the bottom of security precautions in order to release products before rivals), [159] and using AI in weapon systems. [160]

The thesis that AI can posture existential danger likewise has detractors. Skeptics generally state that AGI is not likely in the short-term, or that issues about AGI sidetrack from other issues related to present AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for many individuals outside of the innovation market, existing chatbots and LLMs are already viewed as though they were AGI, causing further misunderstanding and worry. [162]

Skeptics in some cases charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence changing an illogical belief in a supreme God. [163] Some scientists believe that the interaction campaigns on AI existential threat by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulatory capture and to inflate interest in their items. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and researchers, released a joint statement asserting that "Mitigating the threat of extinction from AI should be a worldwide priority together with other societal-scale dangers such as pandemics and nuclear war." [152]

Mass unemployment


Researchers from OpenAI approximated that "80% of the U.S. workforce might have at least 10% of their work tasks impacted by the introduction of LLMs, while around 19% of workers may see at least 50% of their tasks affected". [166] [167] They consider workplace employees to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI might have a much better autonomy, capability to make choices, to user interface with other computer system tools, but likewise to manage robotized bodies.


According to Stephen Hawking, the result of automation on the quality of life will depend upon how the wealth will be redistributed: [142]

Everyone can enjoy a life of luxurious leisure if the machine-produced wealth is shared, or the majority of people can end up miserably poor if the machine-owners successfully lobby versus wealth redistribution. So far, the pattern seems to be towards the 2nd choice, with innovation driving ever-increasing inequality


Elon Musk thinks about that the automation of society will need federal governments to adopt a universal fundamental income. [168]

See also


Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain
AI impact
AI safety - Research area on making AI safe and advantageous
AI alignment - AI conformance to the intended objective
A.I. Rising - 2018 film directed by Lazar Bodroža
Artificial intelligence
Automated maker knowing - Process of automating the application of maker knowing
BRAIN Initiative - Collaborative public-private research study initiative revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre
General game playing - Ability of expert system to play different games
Generative expert system - AI system efficient in producing material in action to prompts
Human Brain Project - Scientific research job
Intelligence amplification - Use of information technology to enhance human intelligence (IA).
Machine principles - Moral behaviours of man-made machines.
Moravec's paradox.
Multi-task learning - Solving numerous machine finding out jobs at the very same time.
Neural scaling law - Statistical law in maker knowing.
Outline of synthetic intelligence - Overview of and topical guide to expert system.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or kind of expert system.
Transfer knowing - Artificial intelligence strategy.
Loebner Prize - Annual AI competitors.
Hardware for expert system - Hardware specifically created and optimized for expert system.
Weak expert system - Form of artificial intelligence.


Notes


^ a b See listed below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the article Chinese space.
^ AI founder John McCarthy writes: "we can not yet identify in general what sort of computational treatments we wish to call smart. " [26] (For a discussion of some meanings of intelligence utilized by artificial intelligence scientists, see approach of synthetic intelligence.).
^ The Lighthill report specifically criticized AI's "grand goals" and led the taking apart of AI research study in England. [55] In the U.S., DARPA became determined to money only "mission-oriented direct research study, rather than standard undirected research". [56] [57] ^ As AI creator John McCarthy composes "it would be a great relief to the remainder of the workers in AI if the inventors of brand-new general formalisms would reveal their hopes in a more secured form than has in some cases held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As defined in a standard AI textbook: "The assertion that makers might potentially act wisely (or, perhaps better, act as if they were intelligent) is called the 'weak AI' hypothesis by theorists, and the assertion that devices that do so are actually believing (rather than imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to ensure that synthetic basic intelligence advantages all of mankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is producing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were determined as being active in 2020.
^ a b c "AI timelines: What do professionals in artificial intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton gives up Google and cautions of danger ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can prevent the bad actors from utilizing it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you alter modifications you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The real danger is not AI itself but the way we deploy it.
^ "Impressed by expert system? Experts state AGI is coming next, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might present existential risks to humanity.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last invention that humanity needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of extinction from AI should be a global concern.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists caution of threat of termination from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from developing makers that can outthink us in basic methods.
^ LeCun, Yann (June 2023). "AGI does not provide an existential threat". Medium. There is no factor to fear AI as an existential danger.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the complete range of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is changing our world - it is on all of us to make certain that it works out". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart characteristics is based on the topics covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reconsidered: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reevaluated: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a real kid - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists dispute whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar test to AP Biology. Here's a list of challenging tests both AI versions have actually passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended checking an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer researchers and software application engineers avoided the term expert system for worry of being seen as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite development in device intelligence, synthetic general intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Expert system will not turn into a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general synthetic intelligence will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will artificial intelligence bring us utopia or damage?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A survey of professional viewpoint. In Fundamental concerns of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022.
^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022.
^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559.
^ Goertzel & Pennachin 2006.
^ a b c (Kurzweil 2005, p. 260).
^ a b c Goertzel 2007.
^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020.
^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190.
^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130.
^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as wise as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019.
^ Grossman, Gary (3 September 2020). "We're going into the AI golden zone in between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are already seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is arguable, but the agreement is that it is not AGI. ... If nothing else, GPT-3 informs us there is a happy medium between narrow and general AI.
^ Quach, Katyanna. "A designer developed an AI chatbot using GPT-3 that assisted a man speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021.
^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can carry out over 600 jobs, from playing games to controlling robotics", TechCrunch, archived from the initial on 16 June 2022, obtained 12 June 2022.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL]
^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023.
^ Bove, Tristan. "A.I. might equal human intelligence in 'just a couple of years,' says CEO of Google's primary A.I. research lab". Fortune. Retrieved 4 September 2024.
^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI might pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead".
^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to specify Artificial General Intelligence". Fast Company.
^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024.
^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023.
^ Sandberg & Boström 2008.
^ Drachman 2005.
^ a b Russell & Norvig 2003.
^ Moravec 1988, p. 61.
^ Moravec 1998.
^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study project maps the human brain". euractiv.
^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014.
^ de Vega, Glenberg & Graesser 2008. A large range of views in present research study, all of which require grounding to some degree
^ Thornton, Angela (26 June 2023). "How publishing our minds to a computer system may become possible". The Conversation. Retrieved 8 November 2023.
^ Searle 1980
^ For instance: Russell & Norvig 2003,
Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced estimate in" Encyclopedia.com"),.
MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced quote in "AITopics"),.
Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.




^ a b c Russell & Norvig 2003, p. 947.
^ though see Explainable artificial intelligence for interest by the field about why a program behaves the method it does.
^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review.
^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024.
^ Nagel 1974.
^ "The Google engineer who thinks the company's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023.
^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024.
^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024.
^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal.
^ "Artificial General Intelligence - Do [es] the cost outweigh benefits?". 23 August 2021. Retrieved 7 June 2023.
^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023.
^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023.
^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023.
^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, threats, methods (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York City, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2.
^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that people will ruin ourselves". Vox. Retrieved 8 June 2023.
^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security danger' to Australia, Senate questions states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023.
^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6.
^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9.
^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023.
^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023.
^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023.
^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023.
^ "Stephen Hawking: 'Transcendence looks at the implications of synthetic intelligence - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014.
^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023.
^ "The interesting Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI". The remarkable Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023.
^ "Will Expert System Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023.
^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI threat: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2.
^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023.
^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report alerts". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023.
^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard postured however expert system can not be neglected". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023.
^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023.
^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015.
^ Titcomb, James (30 October 2023). "Big Tech is stiring worries over AI, alert scientists". The Telegraph. Retrieved 7 December 2023.
^ Davidson, John (30 October 2023). "Google Brain creator states huge tech is lying about AI extinction risk". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023.
^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market effect potential of big language designs". OpenAI. Retrieved 7 June 2023.
^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of workers might see their tasks impacted by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023.
^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we require universal standard income due to the fact that 'in the future, physical work will be a choice'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023.
Sources


UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021.
Chalmers, David (1996 ), The Conscious Mind, Oxford University Press.
Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007.
Crevier, Daniel (1993 ). AI: The Tumultuous Search for Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3.
Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68.
Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114.
Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4.
Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013.
Goertzel, Ben (December 2007), "Human-level synthetic basic intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, recovered 1 April 2009.
Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, retrieved 7 May 2011.
Howe, J. (November 1994), Expert System at Edinburgh University: a Viewpoint, archived from the original on 17 August 2007, obtained 30 August 2007.
Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5.
Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press.
Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Expert System: a paper seminar, Science Research Council.
Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7.
McCarthy, John (2007b). What is Expert system?. Stanford University. The ultimate effort is to make computer programs that can resolve issues and achieve goals worldwide as well as humans.
Moravec, Hans (1988 ), Mind Children, Harvard University Press
Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, retrieved 23 June 2006
Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, recovered 7 November 2009
Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022.
Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4
NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, recovered 29 September 2007
Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, recovered 6 December 2007
Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2
Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, recovered 5 April 2009
Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, retrieved 3 September 2020
Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row
Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.


de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4
Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - by means of ResearchGate.


Further reading


Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1
Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, retrieved 4 September 2013 - through ResearchGate
Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, retrieved 31 August 2012
Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what might be called "Dyson's Law") that "Any system simple sufficient to be understandable will not be made complex enough to behave smartly, while any system complicated enough to behave wisely will be too made complex to understand." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead simple foolish. They work, but they work by strength." (p. 198.).
Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, retrieved 25 July 2010.
Gleick, James, "The Fate of Free Choice" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what distinguishes us from makers. For biological creatures, factor and function originate from acting worldwide and experiencing the repercussions. Expert systems - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.).
Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013.
- Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who want to get rich from AI are going to have the interests of the rest of us close at heart,' ... writes [Gary Marcus] 'We can't count on governments driven by campaign financing contributions [from tech business] to press back.' ... Marcus information the demands that people need to make of their federal governments and the tech business. They consist of transparency on how AI systems work; compensation for wikitravel.org individuals if their information [are] used to train LLMs (large language model) s and the right to grant this use; and the capability to hold tech companies liable for the damages they bring on by removing Section 230, imposing cash penalites, and passing more stringent item liability laws ... Marcus also suggests ... that a new, AI-specific federal firm, akin to the FDA, the FCC, or the FTC, might offer the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... suggests ... establish [ing] an expert licensing routine for engineers that would work in a comparable method to medical licenses, malpractice fits, and the in medication. 'What if, like doctors,' she asks ..., 'AI engineers likewise swore to do no damage?'" (p. 46.).
Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653.
Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, asystechnik.com which has stymied human beings for years, reveals the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has actually revealed that although NLP (natural-language processing) models are capable of amazing accomplishments, their abilities are quite restricted by the quantity of context they receive. This [...] might trigger [problems] for researchers who hope to use them to do things such as evaluate ancient languages. In some cases, there are couple of historic records on long-gone civilizations to work as training information for such a function." (p. 82.).
Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to produce phony videos indistinguishable from real ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply realistic videos produced utilizing artificial intelligence that actually trick individuals, then they hardly exist. The phonies aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in basic, operating in our media as counterfeited proof. Their role better looks like that of animations, specifically smutty ones." (p. 59.).
- Leffer, Lauren, "The Risks of Trusting AI: We should prevent humanizing machine-learning designs utilized in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81.
Lepore, Jill, "The Chit-Chatbot: Is talking with a device a discussion?", The New Yorker, 7 October 2024, pp. 12-16.
Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of artificial basic intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45.
McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009.
McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1.
Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, retrieved 29 September 2007.
Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill.
Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and distributed at the 2007 Singularity Summit, San Francisco, California.
Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead authorities to disregard inconsistent proof?", The New Yorker, 20 November 2023, pp. 20-26.
Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test however showed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at jobs that require real humanlike thinking or an understanding of the physical and social world ... ChatGPT appeared not able to reason logically and tried to rely on its huge database of ... realities derived from online texts. "
- Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are powerful however undependable. Rules-based systems can not deal with scenarios their programmers did not expect. Learning systems are limited by the data on which they were trained. AI failures have actually currently led to disaster. Advanced auto-pilot features in vehicles, although they carry out well in some scenarios, have driven cars without warning into trucks, concrete barriers, and parked cars and trucks. In the incorrect circumstance, AI systems go from supersmart to superdumb in an instant. When an enemy is attempting to manipulate and hack an AI system, the dangers are even higher." (p. 140.).
Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267.
- Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new innovations however count on the timelelss human tendency to anthropomorphise." (p. 29.).
Williams, R. W.; Herrup, K.