
TraceBack

MOO, Open Source, and the Humanities

Jan Rune Holmevik

Dr. Art. Thesis

Dept. of Humanistic Informatics

Faculty of Arts, University of Bergen

Spring 2004

© 2004 by Jan Rune Holmevik

ISBN 82-497-0189-5

This material may be distributed only subject to the terms and conditions set

forth in the Open Publication License, v1.0 or later (the latest version is presently

available at http://www.opencontent.org/openpub/). A copy of the license is

included in the section entitled “Appendix C. Open Publication License.”

Distribution of substantively modified versions of this document is prohibited

without the explicit permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book

form is prohibited unless prior permission is obtained from the copyright holder.

Contents

Acknowledgements vii

About the enCore Software Distribution xi

Chapter 1. Introduction 1

Humanistic Informatics 5; Innovate! 7; The Design of this Project 9;

How the Study Unfolds 11; Terminology 17; Research Methods 20; The

enCore Software Distribution 24

Chapter 2. To Invent the Future: A History of Software 27

A Universal Machine 31; The Origins of Computer Programming 36;

Programming Languages 38; The Hackers 43; The Personal Computer

47; The Killer App 48; Apple, Microsoft, and the IBM PC 49; The

Return of the Hackers 53; Email 54; Usenet 57; IRC and Other Chat

Systems 60; The World Wide Web 62; Mosaic: Graphical User Interface

for the World Wide Web 66; Conclusions 68

Chapter 3. Free as in Freedom: The Story of BSD and GNU/Linux 71

Time-Sharing and the Roots of Unix 73; Unix 77; BSD: The Berkeley

Software Distribution 79; “Read the Protocol and Write the Code” 82;

BSD, A Model for Collaborative Software Development 85; BSD on the

PC 86; GNU’s not Unix 89; “Copyleft--all rights reversed” 93; Building

an Operating System Bit by Bit 94; Linux: Just for Fun 98; The Little OS

That Could 105; Conclusions 108

Contentsiv

BSD, A Model for Collaborative Software Development 85; BSD on the

PC 86; GNU’s not Unix 89; “Copyleft--all rights reversed” 93; Building

an Operating System Bit by Bit 94; Linux: Just for Fun 98; The Little OS

That Could 105; Conclusions 108

Chapter 4. We Changed the World: The Hacker Movement in the 1990s 111

In Search of “The Next Big Thing” 112; Red Hat: “Rising on a wave of

inevitability” 114; “The Cathedral and the Bazaar” 117; The Open

Source Initiative 121; A Conflict of Interests: Ideology vs. Pragmatism

125; The Halloween Documents: The Empire Strikes Back? 130;

Apache: A Patchy Server for the World Wide Web 133; Mozilla: A

Revolutionary Project for Revolutionary Times 138; Slashdot.org: The

Hackers’ Lounge on the Web 146; SourceForge.net: The World’s

Premier Hacker Workshop 148; Freshmeat.net: The Hacker’s

Supermarket 149; Worldwide Hacker Communities 149; Conclusions

151

Chapter 5. From Code to Community: MUD and the Case of LambdaMOO 153

A Short History of MUD 154; TinyMUD 159; MOO 162; The

Beginnings of LambdaMOO 167; From Computer Program to

Community 169; Socio-technical Experiences of LambdaMOO 178; The

Lambda Distribution 182; The LambdaMOO Server 184; LambdaCore

186; The Legacy of LambdaMOO 188; Conclusions 190

Contents v

Chapter 6. Between Theory and Practice: Lingua and the enCore Open

Source Project

193

Amy Bruckman and MediaMOO: Academic MOOs in the Making 194;

Designing Lingua MOO 199; High Wired: The Beginning of an Open

Source Project 208; Building on Open Sources 210; High Wired enCore:

An Educational MOO Core Distribution 211; What's in a License? 213;

enCore: The Early Days 215; enCore exchange 216; enCore 2.0: Open

Source Stage Two 219; Xpress Explained 226; enCore Xpress: MOO

Redux 239; Conclusions 240

Chapter 7. Conclusions 247

Practice What You Preach 248; The Promise of Open Source 249;

Lessons From the enCore Open Source Project 254; A Final Challenge

258

Appendix A. The enCore Manifesto 265

Appendix B. enCore Portfolio 269

Appendix C. Open Publication License 291

References 297

Contentsvi

Acknowledgements

Every journey must come to an end and so must the journey that is a dissertation.

In one way or another I have been involved with the technologies, methodologies

and practices that are the subject of this study for the last 10 years. I still have

vivid memories from my first encounters with Linux, MOO, Email, the World

Wide Web and many of the other technologies that are covered within these

pages. I have lived with them and through them for so long that they are part of

who I am. This study, therefore, is also a personal story about my own coming of

age as an observer, scholar, participant, and creator of technologies that influence

our lives.

Journey’s end is an appropriate time to contemplate what you have done and

experienced on a long voyage. It is also a time to acknowledge those who have

helped and supported you along the way. I have been very fortunate to have had

the support of many great people who I consider not only to be my sharpest

peers, but also close and personal friends. First and foremost I wish to extend my

sincere gratitude to my dissertation supervisor, Professor Espen Aarseth. He

believed in me right from the start, and over the years he has been a true source

of support, inspiration and gentle encouragement. The opportunity he gave me

to chair the Digital Arts & Culture Conference in 2000 was a gesture for which I

am deeply and utterly grateful.

Acknowledgementsviii

A substantial part of this project has centered on the development of an Open

Source software package called enCore. In this work I have benefited from a

number of contributions of code from MOO programmers all across the world.

Some of them have contributed large parts, some small, but I am truly grateful

for everything they have done. I would therefore like to take this opportunity to

thank them each individually. In no particular order, their names are: Pavel

Curtis, Cynthia Haynes, Sindre Sørensen, Ken Schweller, Mark Blanchard, Jorge

Barrios, Amy Bruckman, Matthew Campbell, John Towell, Gustavo Glusman,

Craig Leikis, Juli Burk, Michael Thompson, Rui Miguel Barbosa Pinto, Andrew

Wilson, Ken Fox, Matthew Allen Beermann, Jason Nolan, Noel Davis, Stephen

Ashley, Hervé Collin, Emma Jane Hogbin, Claudijo Borovic, Alexandre Borgia,

Scott Carmichael, Michel Lavondes, and Daniel Jung.

Thanks are also due to all those who have used the enCore system to create

new educational MOOs over the years. There are far too many to name, but I

want you all to know that I have taken immense pride in the way you have

helped further the use of MOO technology in education. Your success is my

reward.

Just as the dissertation itself has been a journey in virtual worlds, so have I

journeyed in the real world while creating it. I would therefore like to pay tribute

to the places that have inspired my work. I wrote the prospectus for the

dissertation in a small hotel room in Honolulu, Hawaii back in the summer of

1997. As I write these final words I find myself back at my family farm

overlooking the Geirangerfjord on the west coast of Norway. In the interim my

work has taken me to exotic and far-flung places such as Ghost Ranch in the high

desert of New Mexico, where I wrote most of the code for enCore version 3.0,

and Cape Town, South Africa, where I wrote the draft of what has now become

Acknowledgements ix

chapter six. From my office at the University of Bergen, Norway to my balmy

front porch in Fort Worth, Texas, the places I have worked have inspired my

writing in ways that are hard to quantify.

The significance of friendship can also be hard to quantify, but there is no

doubt as to its value. It is important for me, therefore, to include my good friend,

Dr. John F. Barber, in these acknowledgements. Musing over fine Belgian Ales on

a shady front porch on sunny afternoons, or cruising together along the twisty

back roads of Texas on a couple of well-oiled Harleys has provided much needed

diversion and intellectual relief. Thanks for being there, buddy.

This project was made possible through a 3-year doctoral scholarship from

the Norwegian Research Council’s program Social and Cultural Premises for

Information and Communication Technology (SKIKT). The Department of

Humanistic Informatics at the University of Bergen provided the funding for a 4th

year and also gave me the opportunity to teach in the department’s

undergraduate program. My heartfelt thanks go to professors Roald Skarsten

and Dag Elgesem as well as my colleagues and fellow graduate students: Dr.

Hilde Corneliussen, Dr. Torill Mortensen, Dr. Jill Walker, and Carsten Jopp.

Finally, I’d like to acknowledge the generous support that I have received from

the School of Arts and Humanities of the University of Texas at Dallas (UTD). I

am especially grateful to Dean Dennis Kratz for inviting me to spend the 2000-

2002 academic years as a visiting scholar at UTD. The School of Arts and

Humanities has also generously hosted Lingua MOO from 1995 to the present as

well as the enCore web site, email listserv, and FTP archive.

They say that one should save the best for last, and so I have done. This

project, the practical programming and development aspects of it as well as the

writing of the dissertation itself, would not have been possible without the

Acknowledgementsx

inspiration, undying support and generous assistance from my dear wife,

Cynthia Haynes. She has not only been my soulmate and best friend over all

these years, she has also been a true partner and colleague. She has always

inspired me to do my very best and to strive for excellence in everything I do. I

dedicate this work to you, Cynthia.

Geiranger, June 2003

Jan Rune Holmevik

About the enCore Software Distribution

The enCore software distribution is the technical development portion of my

dissertation. It includes the latest version the complete enCore system along with

all the updates that I have released since 1997. For easy reference, I have

extracted the source code I wrote for the Xpress client and GUI layer. All total,

the Xpress specific code is about 10.000 lines or approximately 250 pages in

length. These source code files are located in the directory /scr inside the

distribution. The remainder of the enCore specific code can be viewed inside any

enCore-based MOO using the standard @dump or @list MOO commands. The

complete enCore software distribution can be found at the following online

location:

http://lingua.utdallas.edu/encore/

For instructions on how to set up an enCore MOO please see the file

“installation.html” inside the distribution itself.

Please refer to the enCore web site at http://lingua.utdallas.edu/encore/ for any

up-to-date information that may have been released since this dissertation was

submitted (June, 2003).

xii

TraceBack

TraceBack

1: to map information to its point of origin in order to learn more about phenomena

under investigation.

2: debugging tool for MOO programmers. A stack trace that identifies the exact

point at which a run time error has occurred. It includes all verb (method) calls

leading up to the verb where the error is thrown.

3: footprint, or imprint, marking the track where a new path is being cleared.

1

Introduction

Through the endless stream of 0s and 1s you can make out the features of a

guy about 6'3. He's got dark curly hair, bright blue eyes, and he is

wearing black Levis, black boots, and a white t-shirt.

He is awake and looks alert—MediaMOO, 1994.

I took the Internet to purple-crayon.media.mit.edu 8888. It was the spring of 1994

and I was a graduate student in the history of technology at the Norwegian

University of Science and Technology. From my little loft office overlooking the

Frogner Park on the west side of Oslo, Norway, I surfed across virtual landscapes

I never dreamed existed and along the way I met real people who influenced my

life and career in ways I could never have imagined. Purple-crayon was a

computer at the Massachusetts Institute of Technology (MIT) and the home of a

new and exciting academic community, a digital space called MediaMOO. For

me it became the first stop on an intellectual journey that has lasted almost 10

years. This dissertation is my logbook from that journey. It is partly a story about

the creation of some of our time’s most prominent information and

communication technologies (ICT), partly a record of my own personal struggle

with questions and issues pertaining to ICT in teaching and research which

Chapter 12

resulted in new technological solutions to the pedagogical problems of teaching

with one such technology. At the core, however, this dissertation is also an

investigation into how we, as scholars and educators in the humanities (and

specifically the field of Humanistic Informatics), may approach some of the

challenges that these modern information and communication technologies raise.

The fundamental question that became the point of departure for this work

stemmed from a very simple observation. Since the creation of the personal

computer in the 1970s and the proliferation of the Internet in the 1980s and 90s,

information and communication technologies have become more and more

integrated in our daily lives and their impact on society and culture at large is

now so vast that it is often transparent and hard to spot if we do not know what

came before. There are no signs that this development is going to abate or

become less important in the future. To the contrary, new information

technologies emerge at an alarming pace and overwhelm us every day with

promises of a better future. Historically, the research and development of ICT

have been the domain of computer scientists, software and hardware engineers

and other computer professionals, while we as scholars and educators in the

humanities have mostly been passive, and in some cases reluctant, adopters and

users of technologies that are being handed to us. For me, this observation

begged a very simple question: How can we as scholars and educators in the

humanities become more actively involved in the conceptualization and creation

of our own technological future? In response to this question I identified three

essential challenges that I believe must be addressed.

The first challenge centers on our use of ICT. In order to understand the

inherent possibilities and problems with current technologies, we have to

actually use them in our teaching and research. Unless we have a good and

Introduction 3

thorough understanding of how a particular technology works or doesn’t work,

we can be in no position to help improve it or come up with better alternatives.

Fortunately, this challenge is no longer as critical as it once was. Over the past

few decades, what we may call special interest groups within most, if not all,

academic fields have to varying degrees moved to incorporate ICT in their

teaching and research practices. Computers have become a common sight in

many humanities classrooms, and the resistance to technology that prevailed just

ten to fifteen years ago is now fading as a new generation of educators who grew

up with the personal computer and the Internet are moving into faculty positions

everywhere.

The second challenge has to do with our practical and theoretical

understanding of modern information and communication technologies, their

creation, use, and effects on society and culture. To be sure, a good number of

scholars in the humanities have also wrestled with this challenge for a long time

already. In the field of history, for example, scholars have for many years been

interested in how new information technologies can be used in pursuit of

historical research, analysis, and presentation. In the English, Rhetoric and

Composition fields, scholars have formed the sub-field of Computers and

Writing to study the use of information technology in relation to teaching and

research. Computer-assisted language learning has long traditions in many

foreign language departments. Other Humanities disciplines have taken similar

initiatives in regard to the specific challenges they see for their respective fields.

On the theoretical end of the spectrum, scholars in fields such as History of

Science and Technology and Studies of Technology and Society (STS) have done

extensive research on the creation of ICT and the effects on individuals, society

Chapter 14

and culture. In literature, scholars have studied the emergence of new literary

genres made possible by new digital media. The list could go on.

All these initiatives are good and necessary, but to my mind they fall short of

meeting today’s more complex challenge. This is in part due to the fact that some

of them are grounded in a simplistic and rather dated perception of computers as

merely tools, and partly because others are single-disciplinary efforts that

sometimes fail to take into account the cross-disciplinary and cross-cultural

nature of modern ICTs. New forms of expression and communication made

possible by digital information and communication technologies are not just

reproductions of existing forms of communication that can be studied with the

same old theories and methodologies. Most of them are forms of expression in

their own right with their own unique qualities and traits. For instance, an email

is not the same as a traditional letter. Although we can find many similarities,

they are, notwithstanding, different in many ways. “Talking” online in a MOO or

a chat room may at first glance appear like a typed phone conversation, but in

fact it’s not. Again, we can identify certain similarities, but there are also

fundamental differences both with regard to social setting, etiquette, and

purpose. A web page may perhaps look like any other document, but upon

closer scrutiny we’ll find that it is very different from the traditional printed page

in most respects. Electronic forms of text and literature, such as for instance

hypertext, are expanding our notions of what text and literature are and can be.

Similarly, the immensely popular genre of computer games is simply not just a

modern day version of traditional folk tales and board games. Most modern

computer games represent expressions and aesthetics of a different register that

are quite unique in their own right. All these new digital forms of expression beg

scholarly attention and intellectual analyses as to what they say about the socio-

Introduction 5

technical processes in which they are shaped and used, and about the impact

they have upon the evolution of cultural structures. We need to theorize in order

to understand what they are, how they influence the way we relate to one

another, and how they impact the human activity that is the focal point of the

humanities. This will happen best if we go about studying these phenomena in a

concerted and fully cross-disciplinary manner where theories and methodologies

not just from the humanities but also from the sciences come together to infuse a

common research effort.

When I first joined the Department of Humanistic Informatics in 1996 as a

visiting assistant professor, I knew immediately that it was the perfect place for

me to conduct precisely this kind of cross-disciplinary research and

development. Before I continue with a discussion of the third and most

significant challenge that underlies this project, therefore, let me briefly explain

the field of Humanistic Informatics as a way of establishing the academic context

in which I have conducted my work.

Humanistic Informatics

The term informatics refers to the study of Information Technology (IT). In a

narrow sense it is equivalent to the use of the term computer science in North

America where computer programming, systems design and analysis form the

crux of the academic activities. In a broader sense the word informatics also

encompasses the study of IT systems and the effect and function of said systems

in society and culture. Humanistic informatics approaches this broader study of

IT from a humanities perspective.

The Humanistic Informatics program at the University of Bergen was first

established by professor Jan Oldervoll and professor Roald Skarsten in the mid-

Chapter 16

1980s. It was originally called “Information processing for humanities students,”

and its purpose was to teach students from the humanities about how to use

computers as tools in their studies and research. In 1992 Espen Aarseth joined the

program as a research fellow, and he began to offer new courses that dealt with

the cultural aspects of IT. His main interests at the time lay in literature and

computer games, and the work he did for his dissertation, Cybertext, came to

form much of the basis for a new direction for the program. Today, Humanistic

Informatics is a program that attempts to bridge the gap between the sciences

and the humanities by approaching the ICT challenge from the threshold that

exists between them. The overarching aim is to make students aware of the

complex relationships that exist among technology, society, and culture. It is

important for students to learn about the driving forces of technological

development and change and how they influence our lives and shape the

conditions of our future. An equally important goal is to teach students how

cultural and social structures influence and shape the technology. Thus, on the

one hand, a main goal of Humanistic Informatics is to equip students with the

critical and informed theoretical background they need in order to analyze and

understand today’s cultural and societal transformations. On the other hand,

Humanistic Informatics also aspires to give students the technical knowledge

and proficiency they need in order to become players on the stages where

information technologies are conceived, developed, shaped, and used. This

means that students must also learn computer programming in order to master

the tools with which information technologies are built.

Introduction 7

Innovate!

The third and most important challenge that, in effect, became the main thrust for

this project pertains to our own role in the creation of our technological future.

Although I understand that technological development can often seem inevitable

and ever-progressing, I do not subscribe to the deterministic view that there are

intrinsic forces at work that somehow unfold according to their own logic or at

the hands of the technologists that set them in motion. To the contrary, not only

do I believe that we have the power to shape our socio-technological future, but I

also believe that we have an obligation to do so. Due to the massive influx of ICT

in our society and the deep-seeded transformative powers that are at play, we

can no longer afford the luxury of saying that technology does not concern us.

Nor can we remain just reluctant users and critics of technology. As students and

scholars in the humanities we must begin to actively bring our own values and

experiences to bear on the technical development that is taking place, and

thereby help create better technologies and a better future.

One way to assert our influence is to enter into partnerships with computer

scientists and work with them to produce the technologies we want. In order to

do so effectively, however, we need to possess a thorough understanding of how

the technology works and how it is produced. In Humanistic Informatics, it is a

requirement that students learn how to program a computer. The basic

philosophy is that just as the anthropologist must master the language and

customs of the culture she is studying, a student of ICT needs to understand

similar traits of modern technoculture. Only by looking inside the black box of

technology and actually understanding what goes on inside it can we hope to

influence the technical development. Only by “speaking their language” can we

hope to communicate productively with technologists.

Chapter 18

The other way we can contribute to the technological development is to get

completely involved and do the development ourselves. Although this should

not necessarily be a goal for every student in the field, I felt that it was the

appropriate way to approach the subject of this dissertation. Before I go on to

discuss the particulars of how this doctoral project was designed, it is necessary

to first set the stage by discussing one specific example in which we in the arts

and humanities can contribute to new ways of thinking in design and

development in order to produce better and more productive technologies for the

future.

Microsoft Word is without a doubt the most commonly used word processing

program in the world today. With each new version, the Word engineering team

adds new features and options that they think writers want. Evidence to this

effect is found in the plethora of toolbars that Word sports. Many of the features

found in Word are arguably options that most writers want and from which they

do indeed benefit. For example, a good system for managing footnotes and

endnotes is something that every academic writer needs. Other features, such as

annotation and commenting, promote collaborative writing and editing, which I

believe is a good thing. Still, if we look at Word as a writer’s tool, it is striking

how it in fact eludes the very essence of the writing process. If we accept that

writing also constitutes a form of thinking and that thinking is a complex and

inherently multi-directional process, then it should follow that writing itself is

not a linear activity. Thus, a system that presupposes linearity by forcing the

writer to think linearly in crafting her texts does not do a good job of supporting

the fundamental nature of writing. Based on this observation, one might argue

that today’s word processor is in fact nothing more than the latest installment in

Introduction 9

a long evolutionary chain of linear writing tools that include such technologies as

the typewriter and the printing press.

As an alternative to Word and other popular word processors, I would like to

highlight the hypertext-writing environment, Storyspace. This system does not

impose directionality on either the creative writing process or the textual end

result. The process of creation is allowed to follow the meanderings of the mind

as opposed to being dictated or constrained by the convention of linearity. Thus,

I believe Storyspace is an excellent example of a technology that adapts to the

nature of a particular human activity rather than trying to bend the substance to

fit a certain technological or ideological dogma. An important reason why I

believe Storyspace accomplishes this vital goal is that writers and humanities

scholars, such as Michael Joyce, Jay David Bolter and others, were actually

involved in the design and implementation of the system. Because they were

writing professionals, they knew what they wanted; and by being directly

involved in the technical development, they were able to translate their needs

into actual software that they could put to productive use.

The Design of this Project

Starting in early 1995 I began experimenting with educational applications of an

online multi-user chat and gaming technology called MOO (MUD Object-

Oriented). Together with professor Cynthia Haynes of the University of Texas at

Dallas (UTD), I established a MOO site named Lingua MOO for use in freshman

composition, rhetoric and writing classes at UTD. When I started teaching in the

Department of Humanistic Informatics at the University of Bergen, Norway the

following year, I expanded the use of Lingua MOO to my own classes on object-

oriented programming and Internet culture. Over the course of the first two

Chapter 110

years of Lingua MOO we gained a lot of practical experiences with the MOO

technology, and we began to identify areas in which it could be improved in

order to facilitate better conditions for learning and also accommodate new

technical possibilities that we wanted to offer our students.

MOO technology was not a commercial product where we could expect

improvements and updates on a regular basis. In fact, the whole technology was

the result of an informal and voluntary collaboration between a group of hackers

and programmers associated with the online community LambdaMOO. While

they were primarily interested in the social interaction and gaming aspects of

MOO, we were interested in it mainly from an educational point of view. It was

therefore clear to us that if we wanted to make the changes and modifications we

felt were necessary, we had to do it ourselves. With any kind of proprietary

technology this would have been impossible, but MOO was not proprietary, it

was Free Software.

Thus began the project that is the basis for this dissertation. Right from the

start it was a two-pronged effort to, on the one hand, study, analyze, and

understand the history, methodology, and practices behind the development of

the free software systems that we were working with, and on the other hand, to

use this knowledge to implement our ideas in the form of a new and improved

educational MOO system. Throughout the whole project these two activities

went hand in hand. The theoretical and methodological knowledge that I derived

from the study of the history of Free Software and Open Source was, in effect, the

underpinning for the creation of the software program, enCore.

While Dr. Haynes continued to facilitate the daily operation of Lingua MOO,

such as taking care of pedagogical matters, spatial layout design, teaching

schedules, accounts, and so forth, I focused my attention on the development of

Introduction 11

the new enCore MOO database as a general-purpose educational web

application. This study is, therefore, an enactment of both the theory and practice

of the challenges I have outlined above, as well as the implementation of the

knowledge in the form of a free and robust software program. The study enacts

what it traces historically, and it is an enactment of the collaboration that lies at

the heart of the Open Source movement. Without the perspective of enactment,

its key components would, separately, lack the force with which its mission is

pursued. With such a perspective, the study is able to cohesively blend history,

theory, practice, and implementation together with the diverse and numerous

communities of users, students, teachers, and researchers for whom the project

was designed to benefit.

How the Study Unfolds

To give the reader a better understanding of what lies ahead, let me now give an

overview of the case studies that occupy the main chapters that follow.

Chapter 2, Inventing the Future, was designed to be a historical backdrop for

the case studies of Free- and Open Source software. It is a brief historical

overview of some important milestones in the history of software. Starting in the

early 1800s, it traces the roots of the concept of software from the Jacquard Loom

through Ada Lovelace’s theoretical work on algebraic coding and control

systems for Charles Babbage’s mechanical calculators to Konrad Zuse’s work on

the Plankalkül, a sophisticated algorithmic programming system that many

historians now claim was the world’s first high-level programming language. I

then go on to discuss the circumstances surrounding the conception of the

paradigm often referred to as modern computing. The invention of the modern

computer, and the so-called stored-program concept, during and immediately

Chapter 112

following World War II created the first real possibility for a large-scale

implementation of the notion of software. In the late 1940s and 50s a growing

number of mathematicians became interested in the problems pertaining to

programming and control of digital computers. The upshot of these efforts was

the creation of automatic programming systems, programming languages, and

subsequently the formation of a whole new academic field that we now know as

computer science.

Research scientists and other computer professionals conducted most of the

early developments in modern computer science and technology, but from the

early 1960s another group of actors also began to make contributions in these

areas. They were, for the most part, students and other self-taught computer

enthusiasts, and they referred to themselves as the hackers. Since the 1960s, the

hackers have made numerous significant contributions to computer science and

to the technological reality in which we live. They played an important role in the

development of the personal computer, they were instrumental in the creation of

the technologies that forged the Internet, and they have been the principal

architects behind some our time’s most widely used network-based

communication technologies.

Chapter 3, Free as in Freedom, is a study of their role in the Free Software

movement from the 1970s up through the early 1990s. It focuses on the creation

and evolution of Unix, and Unix-like operating systems, which became the focal

points for some of the hacker movement’s greatest achievements during this

time. The analysis opens with an account of early time-sharing systems, which

then leads into a discussion of Ken Thompson’s creation of Unix in the early

1970s. For many years the Unix source code was freely available, and at the

University of California at Berkeley a group of programmers and hackers took

Introduction 13

this opportunity to create their own flavor of Unix named the Berkeley Software

Distribution, or BSD for short. The BSD project became an important playground

for experimentation with some of the collaborative development methodologies

that would later become the hallmark of the Free Software movement. It is also

important to note that BSD was a vital player in the creation of the computer

network that we now know as the Internet.

In 1983-84, the Free Software ideology and the methodologies that had been

implicit in the hacker movement more or less since its very beginning in the late

1950s (cf. Levy) received a significant boost when Richard Stallman founded the

GNU project for the purpose of building a free Unix-like operating system.

Stallman’s great ambition was to create a new framework for software

development that resonated with the old ideals of the hacker movement and its

ethics—a system that was free for anyone to play with and make modifications

to. To this end he instituted an organization named the Free Software Foundation

(FSF) and created a whole new Free Software license dubbed the GNU General

Purpose License that was specifically designed to protect the freedoms in regard

to software that he believed all true hackers craved.

By 1990 the GNU system was slowly coming together. Stallman and a band of

volunteer hackers loosely associated with the Free Software Foundation had

assembled many of the essential components needed to build an Operating

System; but there was one crucial feature missing, they did not yet have a kernel.

The solution to that problem would come from an unlikely source, and its effects

set the hacker movement on fire. I am referring, of course, to Linus Torvalds’

operating system, Linux. The last part of chapter 3 is an investigation of the early

history of Linux and the new collaborative Internet-based development model

that Torvalds pioneered.

Chapter 114

Chapter 4, We Changed the World, frames as its subject matter a few key

historical moments of the hacker movement in the 1990s. Thanks in large part to

the increasing proliferation and adoption of the Internet during this decade,

Linux became the unequivocal flagship of the hacker movement. Not only did it

capture the imagination of hackers everywhere, it also reeled in the popular

media, and helped create a whole new Free Software economy. The Linux

distribution company, Red Hat Inc., became one of the biggest players on the

dotcom scene, and its business model was copied by start-ups and established

companies alike. Free Software had become a hot commodity, and everyone, it

seemed, wanted a piece of the action.

In 1998, at a time when the dotcom economy was still red hot, a group of

hackers under the leadership of Eric S. Raymond and Bruce Perens began to

voice concern that the notion of Free Software, coupled with Richard Stallman

and the Free Software Foundation’s ideological attitude toward software

engineering, would hamper the adoption of hacker methodologies in important

sectors of business and industry. Netscape, perhaps the most prominent dotcom

of the decade, had just announced that they intended to release the source code

to their wildly popular web browser, Netscape Communicator, and Raymond

and Perens felt that this presented a unique opportunity for the hacker

movement to gain even wider acceptance for its methodologies and practices. In

response to Netscape’s announcement, therefore, they came up with the concept

of Open Source as a less dogmatic alternative to Free Software. The creation of

the Open Source Initiative in 1998 seeded a deep conflict between what had in

effect become two flanks of the hacker movement, and a war of words ensued

between the ideologists and the pragmatists within the movement.

Introduction 15

While the hacker movement’s leaders argued over ideology, new Free- and

Open Source software projects continued to emerge at an ever-increasing rate.

The last part of this chapter examines two of the most seminal of these projects,

the Apache web server and the Mozilla web browser, and the circumstances

surrounding their development. It also examines three different online

communities that became important support structures for the evolution of the

hacker movement in the latter part of the 1990s.

Chapter 5, From Code to Community, is a study of a different type of hacker

community, LambdaMOO, and the technology it produced. Most of the ideas

and concepts that ultimately became LambdaMOO were derived from hacker

programming efforts dating back to around 1980, where the principal aim was to

build online multi-player games known as MUDs (Multi-User Dungeons).

LambdaMOO represents a hacker technology that was created in true

collaborative fashion. To participate, programmers actually had to be logged in

to the LambdaMOO system and work on the code from within. The community

was contained within the software itself, and this raises several interesting

questions in regard to differences and similarities between the synchronous

hacker community of LambdaMOO and the more traditional asynchronous

hacker communities that developed the technologies I discuss in previous

chapters. In addition to being a case study on hacker methodologies and

practices in synchronous environments, chapter 5 also serves as an introduction

to the MOO technology that I have used as the basis for the development of the

enCore software.

Chapter 6, Between Theory and Practice, differs from the preceding chapters in

that it reports directly on the design, development, and programming I have

done in connection with the enCore Open Source Project. While the earlier

Chapter 116

chapters were all designed to illuminate and analyze methodologies and

practices fostered by the hacker movement over the past 30 to 40 years, chapter 6

tells the actual story of my own implementation of those methodologies in the

enCore project. As a means of relating the project to its technical and educational

context, the chapter opens with an examination of the development of the

academic and educational MOO in the early 1990s and my own involvement in

this process through the Lingua MOO project.

The middle part of the chapter focuses on the initial conceptualization and

early implementations of the enCore software from around 1997 onward. These

first development efforts were undertaken in conjunction with a book project on

educational MOOs called High Wired, a collection of essays I co-edited with Dr.

Haynes. From 1998-99 on, the enCore project expanded in scope as I set about to

design a new web-based MOO client along with a new graphical user interface

called Xpress. For this purpose I created an Open Source Project using the

historical case studies of previous chapters as guidelines. The first version of the

new enCore Xpress system was released in April of 1999, and an in-depth

explanation of its many features is provided toward the end of the chapter. Some

closing thoughts and remarks on the success and disappointments from the

enCore Open Source project rounds out the chapter.

In addition to these main chapters, this text also includes three appendices

that contain additional material relevant to the dissertation. Appendix A contains

the enCore Manifesto. Appendix B is a comprehensive portfolio of the various

forms of outgrowth of the enCore project, including sample lists of enCore-based

MOO sites, third-party research publications and grants, as well as awards and

media recognition the enCore Open Source Project has received over the years.

Appendix C contains the text of the Open Publication License version 1.0.

Introduction 17

Terminology

Throughout this text I am using several key terms and expressions whose

meanings may or may not be immediately clear to the reader. In the interest of

clarity, and to avoid possible confusion, let me therefore take a moment to

explain the most important of these terms.

Hacker. According to Eric Raymond’s New Hacker’s Dictionary, the term

hacker was “first adopted as a badge in the 1960s by the hacker culture

surrounding TMRC [Tech Model Railroad Club] and the MIT AI Lab.” (“New

Hacker’s) The term has acquired many meanings over the years. Here are some

of the most common definitions.

1. A person who enjoys exploring the details of programmable systems

and how to stretch their capabilities, as opposed to most users, who prefer

to learn only the minimum necessary. 2. One who programs

enthusiastically (even obsessively) or who enjoys programming rather

than just theorizing about programming. 3. A person capable of

appreciating hack value. 4. A person who is good at programming

quickly. 5. An expert at a particular program, or one who frequently does

work using it or on it; as in `a Unix hacker '. (Raymond “New Hacker’s”)

In the 1980s the word hacker also came to be synonymous with someone who

used their extensive programming skills and knowledge of computer systems to

gain illegal access to computer networks, databases and all sorts of sensitive

information. According to Richard Stallman, however, this is a misappropriation

of the word. He explains: “The use of ‘hacker’ to mean ‘security breaker’ is a

Chapter 118

confusion on the part of the mass media. We hackers refuse to recognize that

meaning, and continue using the word to mean, ‘Someone who loves to program

and enjoys being clever about it’” (Stallman, “The GNU Project”). Throughout

this study I have used the word hacker consistent with its original meaning.

Am I a hacker? I don’t know. I certainly share their fascination for computers

and computer programming. Through this project I have also practiced many of

the software development methodologies that they have fostered, but all this is

inconsequential. Like a doctorate, hacker is an honorary title that must be

bestowed upon you by your peers. No true hacker would ever claim it for

himself.

Hacker movement and hacker community. These terms are used somewhat

interchangeably throughout the text. Eric Raymond uses the phrase ‘hacker

community’ to describe the broader fellowship of hackers everywhere

(Raymond, “A Brief History”); but from a historical perspective, talking about

one overarching hacker community can be somewhat misleading. During the

early days of hackerdom, hackers usually congregated in smaller, individual

communities connected to local research institutions and universities. While they

may have shared common interests and traits with hackers in general, their ties

and loyalties were first and foremost directed at the local level. As the computer

networks started to spread within academia in the 1970s and 80s, we start to see a

growing globalization of the hacker communities and the formation of a hacker

movement. Electronic bulletin boards, email, and news groups created new

meeting places where hackers could gather and form communities across many

different boundaries. The creation of the GNU project and the Free Software

Foundation in the mid-1980s represents an important step toward the

consolidation of this movement. Linux and other seminal hacker projects, as well

Introduction 19

as the establishment of the Open Source Initiative in the 1990s, are further

evidence that the hacker communities during this time had joined forces in a

movement to spread hacker methodologies, practices and ethics to the world at

large.

Free Software and Open Source. Both terms refer to a set of principles for

software development as fostered and practiced by the hacker movement. These

principles can be summed up as follows:

• Users should have the freedom to utilize a computer program for whatever

purpose they wish.

• They should always have access to the complete program source code.

• They should be able to make modifications and/or additions to the source

code if they so desire.

• They must be allowed to redistribute their modifications as derivative works

either gratis (as differentiated from free, as in cost) or for a fee.

Although Free Software and Open Source may be concerned with the same

practical goals, they do represent two rather different philosophies on software

engineering within the hacker movement. Richard Stallman, founder of the Free

Software movement, puts it this way.

The fundamental difference between the two movements is in their values,

their ways of looking at the world. For the Open Source movement, the

issue of whether software should be open source is a practical question,

not an ethical one. As one person put it, “Open source is a development

methodology; free software is a social movement.” For the Open Source

Chapter 120

movement, non-free software is a suboptimal solution. For the Free

Software movement, non-free software is a social problem and free

software is the solution. (Stallman, “Why Free Software”)

In this project I have chosen to use the phrase Open Source both in regard to

the enCore software project itself and as an overarching label for the hacker

methodologies that I have studied. The concept of Open Source is practical and

non-committal, and one can use it without subscribing to the more abstract moral

arguments that are embedded in Free Software.

MUD and MOO. These are acronyms that stand for Multi-User Dungeon and

Multi-User Dungeon Object-Oriented, respectively. MUD was initially the name

of the original text-based multi-user adventure game developed by Richard

Bartle and Rob Trubshaw in the late 1970s. A more detailed history of MUD is

found in chapter 5. Since then, the MUD system has been reverse-engineered and

expanded numerous times so that it has in effect become a generic label for many

types of text-based multi-user adventure games. Thus, a MOO is a type of MUD

that has been expanded and modified from its original form. Some of the most

prominent features that distinguish MOO from other MUDs include a user-

extensible, object-oriented database, a built-in programming language, and a

general lack of traditional adventure game and role-playing features.

Research Methods

As mentioned earlier, I have situated this research on the threshold that both

separates and binds together the humanities and sciences, and that bridges the

gap specifically between the various fields encompassed by the humanities and

informatics. Thus, the cross-disciplinary nature of this dissertation made it not

Introduction 21

only necessary for me to draw upon research methods from both history and

Open Source; it called for inventing methods and forms that heretofore could not

be categorized easily nor definitively identified as such. Innovation is derived

from the impetus to invent something ‘novel,’ or new. It also frequently

necessitates new ‘forms’ that in their infancy can only be described as ‘hybrid’

until such time as future research advances more specific terms with better-

articulated meanings. Since the software development methodologies that I have

used are comprehensively covered in the following chapters, my final

introductory remarks concern the historical research methods that inform this

study and the hybrid nature of the method and ‘form’ constituted by this

manuscript and the accompanying enCore software distribution.

In order to lend force to the leading edge I sought both to trace and enact, it

was important that I conduct my research via the media I studied and the

communities they represented and the networks in which they developed. Thus,

the research for the historical case studies in chapters two through five was

conducted almost entirely over the Internet. The bulk of the archival material,

including both primary and secondary sources, was found using Google, the

most widely used search engine in the world today. An important reason why

Google is also an excellent research tool is its unique web page ranking system,

PageRank, developed by Stanford University graduate students Sergey Brin and

Larry Page. In a paper entitled “The Anatomy of a Large-Scale Hypertextual Web

Search Engine,” presented at the Seventh International World Wide Web

Conference in Brisbane, Australia in 1998, Brin and Page explains:

Academic citation literature has been applied to the web, largely by

counting citations or backlinks to a given page. This gives some

Chapter 122

approximation of a page's importance or quality. PageRank extends this

idea by not counting links from all pages equally, and by normalizing by

the number of links on a page. (Brin, “The Anatomy”)

In this manner Google assigns a “page rank” to each page that it

encounters on the web. If a certain page is “cited” by many other pages, its page

rank will be higher than if it is “cited” by only a handful of pages. In addition,

when assigning page ranks, Google also takes into account the fact that some

web sites are of higher quality and/or importance than others. Pages residing on

“important” sites will therefore gain an additional ranking bonus. These are the

main features that have made Google such a popular and efficient tool for

information retrieval; but, incidentally, they are also the reason why some people

are voicing concern about it (Brandt). Much of the worry centers on what people

feel are the “un-objective” and “un-democratic” features of PageRank. In an ideal

world one link should in principle count as much as the next, but in PageRank, as

I have just explained, pages are not treated as equal. The ranking system might

give an unfair advantage to popular pages residing on popular sites, and it may

well give Google as a company too much power and control over information on

the web. On the other hand, Google and its unique PageRank system do offer the

best and most reliable in web search technology available today, and in my work

here it has also proved highly useful as a tool for quality assurance of sources,

which is something with which every historian must always be concerned. Since

most of the software technologies I have studied have been related to the Internet

in one way or another, I did not have any problems identifying authentic

primary source material on the web. In fact, over the period of time that the

historical research was conducted, I noticed a significant increase in the number

Introduction 23

of older primary source materials being put online. In addition to the written

source material, I also conducted four interviews with a few of the principal

figures that appear in this study. Because I have been personally involved in

some of the events covered in this study (see chapter 6), I have also been able to

draw on my own research archive, which, among other things, includes the

complete enCore mailing list dating back to 1997.

In addition, it is useful to point out that the inspiration for the High Wired

volume was grounded in the necessity of collaboration as method, something

that is more frequently condoned in the sciences than in the humanities, but is

becoming more legitimate in the humanities as the Internet both affects and

shapes the production of knowledge in its diverse fields. As an example of this

phenomenon, it was with great difficulty that we conceived a subtitle for the

book. Our editors wanted to be able to market it effectively, and to do so they

had to understand the hybrid nature of its content and mission so that our

readers would also. After much discussion, we agreed to subtitle it, On the

Design, Use, and Theory of Educational MOOs. In retrospect, the subtitle itself may

not have been an important factor in the book’s success, but the fact that it is now

in its second edition suggests that their gamble on this ‘book’ that contained

poetry, essays, personal narratives, dense theory, and practical applications, as

well as a fully developed and free educational software program, paid off. To

further capture the ‘novel’ nature of the enCore project, which even more directly

speaks to the reason for the form that this dissertation takes, it became apparent

that as new forms of research methodologies were required to develop and

disseminate the results of the work, it was increasingly apparent that

conventional methods of writing were transforming traditional forms of writing as

well. The writing I was doing as a scholar in ‘humanistic informatics’ needed to

Chapter 124

be defined in such a way that it included not just theory and practice,

interpretation and analysis, it also needed to include programming. Thus, in the

textbook, MOOniversity, it was my aim to broaden the notion of writing to

contain more than the forms we know as novels, essays, poetry, and other genres.

Writing is thinking, and if programming is also writing, then it is thinking put to

its most ardent test—application. For the first time, a writing textbook, adopted

primarily by college-level writing programs, included a chapter on programming

as writing.

In the wake of all this, it seems not only natural to include the programming

with the manuscript of this dissertation; it is fundamental to the rendering of its

hybrid nature, and crucial to its having been situated within something called,

for now, humanistic informatics.

The enCore Software Distribution

As I have argued, the enCore Open Source distribution is in itself a key element

of the whole project. It includes the latest enCore system along with all the

updates that have been released since 1997. In addition, it contains binaries and

source code for Pavel Curtis’ LambdaMOO server, plus the complete source code

for the Xpress client and GUI layer that I wrote in connection with this project.

The MOO code for the remaining enCore base system can be viewed from inside

any enCore MOO.

You may use the enCore software to set up a complete enCore MOO. Setup

instructions for Unix-based systems are included in the distribution.

Alternatively you may explore the enCore Xpress system from a user perspective

by connecting to Lingua MOO at http://lingua.utdallas.edu:7000/. You are

Introduction 25

Directory Sub directory Contents

encore Contains version 3.3.3 of the enCore

distribution.

images Contains all the icons and artwork that were

developed for enCore version 3.0.

texts Contains Pavel Curtis’ MOO Programming

manual.

sounds Contains the sound files used by the Xpress

system.

vase Contains files specific to the Virtual

Assignment Server Environment (VASE).

stylesheets Contains style sheets used by Xpress if so

enabled.

mootcan Contains binaries, source and documentation

for Sindre Sørensen and Lingo.uib’s

MOOtcan telnet applet.

updates Contains 30 updates to the enCore system

released between 1997 and 2003. Source

code.

bin Contains binary versions of the

LambdaMOO server version 1.8.1 for the

following operating systems: Mac OS X,

Linux, Solaris, Solaris X86, and DEC 4.0.

scr Contains the MOO source code for the

enCore Xpress client and GUI layer.

MOO-1.8.1 Contains the source code for the

LambdaMOO server version 1.8.1.

welcome to request a user account in LinguaMOO, or connect as a temporary

guest.

Perhaps viewing the contents of the enCore software distribution in advance

of reading the text that follows will help readers understand the scope of the

Chapter 126

dissertation. But reading it last could also serve to cap off the historical and

investigative, personal and practical, aspects of reading the text contained in the

chapters. Either way, this story can begin as easily in 1994 as it stands now in

2003—an enCore of an altogether different performance in writing, an enCore

that is a hybrid of both preface and epilogue.

2

To Invent the Future

A History of Software

The best way to predict the future is to invent it. Really smart people with

reasonable funding can do just about anything that doesn't violate too

many of Newton's Laws! –Alan Kay, 1971

Early attempts to “program” machines to perform automated tasks can be traced

back at least to the industrial revolution of the late seventeenth and early

eighteenth century. The perhaps best-known example of such an early

programmable machine is the Jacquard Loom invented by the French silk weaver

Joseph-Marie Jacquard (1752-1834) in 1801. The Jacquard Loom was an automatic

weaving machine that could be programmed to automatically weave any pattern

in fabric. Data about various patterns was encoded as holes or the absence of

holes on pasteboard cards. When a series of these cards was fed into the machine,

it would mechanically read the punched cards and automatically reproduce the

patterns that had been encoded onto them. Some of the most intricate and

complex patterns woven by Jacquard Looms could take tens of thousands of

cards to produce.

Chapter 228

The Jacquard Loom. Wood engraving from 1858. Courtesy of the Deutsches Museum.

While the Jacquard Loom was a programmable machine that bore no

resemblance to calculating machinery whatsoever, another early example of a

programmable machine became, in many historians’ opinion, the very precursor

to the modern computer itself.

In 1833 the British mathematician Charles Babbage (1791-1871) devised a

sophisticated mechanical calculator that could be programmed to automatically

perform scientific computations. Babbage called his machine the Analytical

Engine. The ideas for the machine grew out of another project, the Difference

Engine, which he had worked on since 1823. In his autobiography, Charles

Babbage describes how his life-long pursuit of automatic calculating machinery

began.

To Invent The Future 29

One evening I was sitting in the rooms of the Analytical society at

Cambridge, my head leaning forward on the table in a kind of dreamy

mood, with a Table of logarithms lying open before me. Another member,

coming into the room, and seeing me half asleep, called out, "Well,

Babbage, what are you dreaming about?" To which I replied, "I am

thinking that all these Tables might be calculated by machinery.”

(Williams 163)

Unfortunately, due to the limitations imposed by the tool making art of the

early nineteenth century, and problems of funding caused in part by his

somewhat eccentric personality, Babbage was never able to successfully complete

the Analytical Engine. Thanks in large part to the writings of Lady Ada Lovelace,

daughter of the illustrious British poet Lord Byron, however, the ideas and

concepts of the machine were passed down through history.

Ada Lovelace had become interested in mathematics at an early age, and after

she met Babbage in 1834 and learned of his work she too became fascinated with

his research into automatic calculating machinery. She was one of the few people

at the time who were able to understand and explain Babbage’s work. In one of

her many notes she eloquently sums up the concept of the machine with the

following words: “We may say most aptly that the Analytical Engine weaves

algebraic patterns just as the Jacquard-loom weaves flowers and leaves” (Toole

696). Ada Lovelace is also credited with being the one who came up with the idea

for an algebraic coding system with which to “program” the still-theoretical

machine. Her theoretical thinking went far beyond just mathematical

calculations, however, something that is clearly evidenced in another of her

notes.

Chapter 230

Ada Byron, Lady Lovelace (1815-1852)

Again, it [the Analytical Engine] might act upon other things besides

numbers, were objects found whose mutual fundamental relations could

be expressed by those of the abstract science of operations, and which

should be also susceptible of adaptations to the action of the operating

notation and mechanism of the engine… Supposing, for instance, that the

fundamental relations of pitched sounds in the science of harmony and of

musical composition were susceptible of such expression and adaptations,

the engine might compose elaborate and scientific pieces of music of any

degree of complexity or extent. (Toole 694)

To Invent The Future 31

Ada Lovelace’s significant theoretical achievements in the area of machine

programming has led some to erroneously dub her the world’s first computer

programmer (see for instance Rheingold Tools). Although there are conceptual

similarities between Lovelace’s work and the computer programming systems

devised in the twentieth century, there is no historical evidence to suggest any

direct linkages between the two. Nevertheless, in the history of computing

machinery, especially as it relates to the art of programming, Lady Ada Lovelace

remains one the most prominent figures of all time. In 1979, the U.S. Department

of Defense named a new programming language Ada in her honor.

A Universal Machine

The modern computer, unlike computing and data processing machinery of

previous eras, was a universal machine. It was essentially capable of solving any

problem that could be adequately conceived of and described in an algorithmic

manner. In 1937, the British mathematician Alan M. Turing published a now

famous paper entitled On Computable Numbers in which he formulated many of

the modern computer’s theoretical underpinnings. In this paper Turing

addressed the question of unsolvable mathematical problems known as Hilbert’s

Entscheidungsproblem. He was able to prove the existence of such problems by

devising a theoretical machine (Turing machine) that was, in effect, capable of

solving any computable, that is, solvable mathematical problem. While the

Turing machine and the theory behind it was an important factor in the

conceptualization of the universal machine, it was not until World War II that the

first prototypes of what we today consider the modern computer started to

emerge.

Chapter 232

In wartime Germany, under the cloak of Hitler’s Nazi regime, a young

engineer named Konrad Zuse invented what many historians now believe to be

the world’s first fully functional digital programmable computer (cf. Ceruzzi).

The machine, known as the Z3, was based on Zuse’s earlier work with

electromechanical calculators dating back as early as 1934. With the outbreak of

the war in 1939, young Zuse was drafted into military service, but he managed to

work on the Z3 off and on until the machine became operational in 1941. As Zuse

explains, German aviation authorities took an immediate interest in the Z3 and

realized that it could be a valuable tool in aircraft design.

Unlike aircraft stress, wing flutter results in critical instability due to

vibration of the wings, sometimes in conjunction with the tail unit.

Complex calculations were needed in order to overcome this design

problem. […] I achieved a breakthrough using my equipment for this

calculation. Unfortunately the Aircraft Research Institute had not been

given a high enough priority for me to be released from military service.

(Lee “Konrad Zuse”)

Regrettably, the Z3 was lost during an allied bombing raid on Berlin in 1944,

but by this time Zuse was already hard at work on his next machine, the more

powerful and improved Z4. As allied forces closed in on Berlin in the late winter

and spring of 1945, Zuse was forced to suspend his work in the city and move the

Z4 around what was left of Nazi Germany in an attempt to avoid capture by the

allies. He was successful in his escape and the machine eventually ended up in

To Invent The Future 33

Konrad Zuse (1910-1995). Inventor of the world’s first programmable digital computer.

the small alpine village of Hinterstein where the next chapter in the Z4 saga

unfolded. During the war years Konrad Zuse had, as we shall soon see, also

become interested in problems related to the programming of his machines. He

says:

One aspect became clear to me in view of all this research between 1936

and 1946. Some means was necessary by which the relationships involved

in calculation operations could be precisely formulated. My answer was

"Plankalkül" - today it would be termed an "algorithmic" language. (Lee

“Konrad Zuse”)

Far from the inferno and the war in Berlin, in what once had been a stable in

the peaceful Bavarian countryside, Zuse and his team managed to restore the Z4

Chapter 234

to a working condition and work on the Plankalkül began in earnest. While some

historians hold that Plankalkül was the world’s first high-level programming

language (Giloi), it was not, according to Zuse, “conceived as a means of

programming the Z4 or other computers available at the time.” He says; “Its true

purpose was to assist in establishing consistent laws of circuitry, e.g. for floating

point arithmetic, as well as in planning the sequence of instructions a computer

would follow” (Lee “Konrad Zuse”). Nevertheless, Zuse did use Plankalkül for

specific programming purposes. One of the first applications that he wrote using

Plankalkül was in fact a chess playing program. “I remember mentioning to

friends back in 1938 that the world chess champion would be beaten by a

computer in 50 years time” (Lee “Konrad Zuse”). We know today that he was not

much off in his prediction and that he himself had a lot to do with its realization.

Although Konrad Zuse was clearly ahead of his time, his remarkable

achievements were not generally known or acknowledged until many years later.

Germany had lost the war, and as we know, victors write the history.

The most influential developments leading to the conception of the modern

computer took place on the other side of the Atlantic, at the University of

Pennsylvania’s Moore School of Electrical Engineering. In the summer of 1943 the

U.S. Army Ordnance commissioned a team of Moore School engineers headed by

J. Presper Eckert and John W. Mauchly to build a high-speed computer for the

production of ballistic firing tables. Two years later, in the fall of 1945, the team

presented ENIAC (Electronic Numerical Integrator and Computer), the world’s

first electronic digital computer. Unlike Zuse’s electromechanical machines, the

ENIAC was a fully electronic computer that could crunch out numbers with far

greater speed than any other calculating machine at the time. Yet, for all its

speed, ENIAC had to be manually reconfigured in order to solve different

To Invent The Future 35

ENIAC 1945. Programming the world’s first electronic digital computer.

computational problems. The machine had several great plug boards on which

the “programmers” created physical binary representations of the algorithms

they wanted to run. For each new program they had to go through a tedious and

error prone process of physically rewiring these plug boards.

The process of building the ENIAC taught the engineers a lot about the

potential of high-speed digital computers. In 1945 Eckert and Mauchly had a

series of discussions with renowned mathematician John Von Neumann, of

Princeton University’s Institute for Advanced Study, and came up with the idea

of using a “memory” to store data and computational instructions inside the

machine itself (Von Neumann). This later became known as the Stored-Program

Chapter 236

Concept and was the foundation for the development of all the software

technologies that followed.

The Origins of Computer Programming

In the early days of computer programming, algorithms were typically coded

directly in binary. This was a tedious and error prone process, so the first larger

computer programs were instead written in octal, a numbering system of base

eight which made the transition between our decimal system and the computer’s

binary system somewhat more manageable (cf. Hopper). As the modern

computer became more widespread, a number of other programming systems

were also adopted. One of the most popular of these was the assembly system

that implemented mnemonic codes like ADD and MUL to substitute certain

machine instructions and thereby make the code easier for humans to read and

write. Another problem that frequently occurred when manually translating

programs into machine-readable form was the unintentional introduction of

errors. Even the slightest mistake could corrupt the entire program, and as a

result, the programmer often had to spend much time finding and correcting the

problem. As long as the computer was primarily being used for scientific

computations, and furthermore, carefully tended to by a staff of highly skilled

mathematicians doing the programming work, coding in octal or assembly, for

example, was a feasible way of utilizing the sparse machine resources because of

its isomorphic relationship to machine code. However, during the 1950s, as the

computer was increasingly being applied to other areas such as business data

processing, for instance, this scheme became more problematic.

When the Eckert-Mauchly Computer Corporation around 1950 started selling

their Universal Automatic Computer, better known as UNIVAC, one of the

To Invent The Future 37

things they did to remedy this problem was to provide a system for easier

programming. The system called Short Code was written by John Mauchly in

1949, and it was the first serious attempt to give the “programmer an actual

power to write a program in a language which bore no resemblance whatsoever

to the original machine code” (Hopper 9).

In 1951, the mathematician Grace M. Hopper also started to look into this

problem. Hopper was already among the veterans in the emerging field of

modern computing and had considerable experience in computer programming

dating back to projects she had worked on during the war. Her point of view was

that “you could make a computer do anything which you could properly define”

(Hopper 13). So, why not let the computer automate the entire code translation

process? The solution that she came up with in May of 1952 was the compiler, a

program that took as its input another program and gave as an output a

machine-readable, or binary version, of that program.

The advent of the compiler revolutionized the art of computer programming.

It was able to translate code into binary both fast and accurately, and,

consequently, programmers no longer had to think like a machine when

formulating solutions to the problems they wanted to solve. Instead they were

able to focus on the more abstract principles and mechanisms that constituted the

algorithmic solution to their problems. The new “automatic” programming

scheme pioneered by Hopper, combined with efforts to create pseudo-coding

systems such as Short Code, eventually led to what we know as high-level

programming. Another equally important “side-effect” of the compiler was that

it opened the potential for commercial software. People cannot easily read

programs distributed in binary form so a compiled program is therefore an

excellent safeguard for intellectual property such as algorithms. Although the

Chapter 238

Rear Admiral Grace Murray Hopper (1906-1992). Photo courtesy of The Naval Historical

Center.

compiler made all this possible very early on, software development for

commercial gain did not take off until at least a decade later. During these early

years the money was in hardware—software was mostly an incentive to drive

hardware sales.

Programming Languages

From the late 1950s onward an increasing amount of research went into the

development of high-level programming languages. It created a whole new

understanding of what modern computers could do, and by extension, it also

spawned a whole new field of scientific research. What had previously been

considered to be “applied mathematics” would henceforth be known as

Computer Science.

To Invent The Future 39

A programming language is, in essence, a set of natural language-like

statements coupled with mathematical and operational rules for how to

formulate problems that a computer can solve. With the aid of such languages,

the once arcane art of coding a computer became radically simplified. Problems

could now be formulated using an English-like syntax where the programmer

focused on the logical solution to a problem rather than the technical oddities of

binary coding and translation.

Two of the most widespread programming languages ever, FORTRAN

(FORmula TRANslation, 1957) and COBOL (Common Business Oriented

Language, 1959) first came into existence during the late 1950s. Another less

widespread, yet highly influential, programming language named Algol

(ALGOrithmic Language, 1960) was also born during these early days of high

level programming language development. Together, these three languages came

to form the nucleus that shaped the direction in which subsequent efforts in

programming language development and software design would follow.

BEGIN

FILE F (KIND=REMOTE);

EBCDIC ARRAY E [0:11];

REPLACE E BY "HELLO WORLD!";

WHILE TRUE DO

 BEGIN

 WRITE (F, *, E);

 END;

END.

The classic “Hello World” program written in Algol.

Chapter 240

Within a few short years there were programming languages for scientific

computation, data processing, simulation, artificial intelligence and many other

areas of application. While the trend early on leaned heavily toward the

proliferation of special purpose languages, the search for the general purpose

programming language became the primary focus of the science and engineering

efforts toward the end of the decade. The desire to conceive unifying and general

purpose programming concepts arose partly out of a more mature understanding

of the modern computer as truly a universal machine. In part it came as a

response to a notion that software development in the late 1960s had reached a

state of crisis (Naur and Randell). The outcome of the debates surrounding these

issues was, on the one hand, the new field of Software engineering, and on the

other, a general consensus about the importance of general purpose

programming tools.

The first steps that led to the idea of the general purpose programming

language took place ten years earlier. Early programming language development

was predominantly platform specific, i.e., IBM was making FORTRAN for their

hardware, and Univac was making FLOW-MATIC (and later COBOL) for their

systems. In 1958, therefore, an international committee of research scientists met

in Zurich, Switzerland, with the goal of creating a universal, platform

independent language that could serve as a platform for publication of

algorithms. While the original Algol 58 specification was important in its own

right, it was the refined Algol 60 two years later that would become one of the

most important milestones in the history of programming languages. Even

though Algol was for all intents and purposes a language for scientific

To Invent The Future 41

Milestones in the History of Programming Languages, 1957-1997.

computations, it clearly demonstrated the benefits of code portability and

unifying language constructs.

When Algol became such an important milestone in the history of

programming languages it had much to do with the fact that is was an

international research effort. Many of the luminaries of Computer Science started

their careers in the Algol research community, and several of the language

projects that continued to lead the field into the 1970s and 80s had their origins in

Algol. One such language was Simula developed by Kristen Nygaard and Ole-

Chapter 242

Johan Dahl at the Norwegian Computing Center in Oslo, Norway, between 1964

and 1968. Simula was originally an Algol-based language for discrete-event

simulations, but with the increasing emphasis on generality, it was later revised

into a full general-purpose programming language. Simula is notable because it

was the first language to introduce the concepts of Object-Oriented

Programming, which became the dominant paradigm in computer programming

in the 1990s. Another important language that grew out of the Algol research

community was Pascal, written by Niklaus Wirth of the Swiss Federal Institute of

Technology in Zurich between 1968 and 1972. Pascal became perhaps the most

important educational programming language of the 1970s and 80s.

By the time the 1970s rolled around, general purpose programming languages

had become the mainstay of computer science. During the next ten years, most of

the development efforts in programming language design would be directed not

so much toward the creation of new concepts as toward the refinement of the

principles of generality. The one language that perhaps more than any other

managed to capture the spirit of universal applicability was C, a language

designed by Dennis M. Ritchie of Bell Labs in the years between 1969 and 1973. C

was developed in close relation to the Unix operating system, and for this reason

it quickly became a favorite development tool among programmers in many

fields.

In the 1980s the focus shifted once again toward new theories. This time

concepts such as Object-Oriented programming, modularity, and the re-use of

code became the focal points for the research and development efforts. While

Object-Oriented Programming had first been introduced in Simula back in the

1960s, it was languages such as Smalltalk, C++, and Java that would bring them

To Invent The Future 43

out into the world and establish the paradigm that dominated the field around

the turn of the century.

The Hackers

By the 1960s, computers were becoming commercially available in greater

numbers. Companies such as Sperry Rand Univac, IBM, DEC, and others, offered

systems that were within the financial reach of universities and research

institutions. For the first time students on a broader scale would get a chance to

work with the new and exciting computer technology. In his book, Hackers:

Heroes of the Computer Revolution, Stephen Levy examines how one such group of

students at the Massachusetts Institute of Technology (MIT) became so fascinated

with the computer that it completely consumed their lives. These were the

original hackers. Contrary to popular belief, a hacker is not a computer criminal,

but rather, in the words of the world’s perhaps most famous hacker, Richard

Stallman, “someone who loves to program and enjoys being clever about it”

(Stallman “The GNU”).

The first MIT hackers were young male students who shared a deep

fascination for computers and the things they could do. To these young men, the

computer represented something far more than a mere tool to achieve other

goals. To them, the computer itself was the goal. In his study of the early MIT

hackers, Levy reveals that they not only shared a common interest in computers,

but that they also shared a community of values and cultural traits. Over the

years the hackers have played the part of both villains and heroes. Their

contributions to the history of software were not like the academic and business

contributions that I have discussed above. Their approach was an idealistic one.

They did not code in order to produce academic papers, programming standards,

Chapter 244

or to make money. They coded simply because they loved doing it and because

they thought it was fun. According to the New Hacker’s Dictionary, hacking as it

relates to computers might be understood as “an appropriate application of

ingenuity. Whether the result is a quick-and-dirty patchwork job or a carefully

crafted work of art, you have to admire the cleverness that went into it”

(Raymond, “New Hacker’s”).

For the hackers of the early 1960s, computers were not easily accessible. The

machines of the day were typically large mainframe systems that did not allow

for exclusive individual use. Because of the heavy investments made in these

machines, it was paramount that they be used to the maximum capacity at all

times. For this reason, batch processing was the order of the day. In a batch

processing system, computer programs and data were prepared off-line and then

fed into a queue of tasks that the computer would then carry out. The MIT

hackers viewed batch processing as an oppressive system that kept them out and

limited their opportunity to use the machines they knew were available. Many of

them still managed to gain access to the computers late at night, though, when no

one else was around.

During the daytime if you came in, you could expect to find professors

and students who didn't really love the machine, whereas if during the

night you came in you would find hackers. Therefore hackers came in at

night to be with their culture. And they developed other traditions such as

getting Chinese food at three in the morning. And I remember many

sunrises seen from a car coming back from Chinatown. It was actually a

very beautiful thing to see a sunrise, cause' that's such a calm time of day.

It's a wonderful time of day to get ready to go to bed. It's so nice to walk

To Invent The Future 45

home with the light just brightening and the birds starting to chirp, you

can get a real feeling of gentle satisfaction, of tranquility about the work

that you have done that night. (Stallman “Lecture”)

The concept of time-sharing was invented in order to make more efficient use

of a computer’s resources, and in universities it significantly improved the

students’ access to computers. Time-sharing was built around the idea that users

share the CPU’s resources. This is done by way of an operating system that

divides the CPU’s total power among all users so that each user gets the feeling

of having the entire machine to themself. With the advent of time-sharing, a truly

interactive approach to computer programming could be adopted, and this was

something that suited the hackers perfectly.

In the 1950s and 60s computer software was not generally something that was

commercially available. Typically, the computer makers would commission or

write software for their own systems. This software was then provided as part of

the computer system that was purchased. Software was, in other words,

something that was not sold separately, and as such, didn’t have much of a

market value of its own. The value of the software laid in the total solution that

computer vendors could offer to augment their hardware systems. In many cases

this meant programming languages and compiler systems that users could

employ to develop their own software solutions.

Programming was a novel activity with which only a few people had much

experience. In this embryonic environment, the hackers coded for fun, to see how

far they could go, and how they could impress their friends and peers with ever

more ingenious and elegant programs. The code they wrote was freely circulated

among the members of small hacker groups, and anyone could make changes to

Chapter 246

someone else’s code. Few hackers thought of actually making a living from

programming computers, or pursuing an academic career in computer science.

For some observers, the hackers were wiz kids who could do things with

computers few others could match; for the majority, however, they were viewed

as socially inept outcasts. To the hackers none of this mattered much. In their

own eyes they belonged to an elite group of people, code warriors who had

conquered the mighty computer and bent it to their will.

From the 1960s onwards the hackers developed a collaborative model of

software development where anything from code fragments to entire computer

programs were considered community property and freely shared among its

members. At the core of this gift-economy was the source code. A computer

program in readable form is called source code. Anyone who knows the syntax

of the particular programming language in which the program is written can

usually read and understand what the program does. With the right tools and

knowledge, they can change and adapt the program to their own particular

purposes.

Since the computer has no concept of what the source code means, it must be

translated into machine-readable binary form before it can be used. The compiler

is a computer program that was developed for the express purpose of rapid

automatic translation of source code into binary code. As I have mentioned, by

doing this, the compiler opened up the concept of proprietary software. When

the source code is sent through a compiler and translated into computer-readable

binary form, it is no longer possible to read it. Nor is it possible to change it

unless the source code is available. This means that the programmer can keep the

source code to themselves and only give others access to the finished binary

versions of programs. In the limited market for commercial software that existed

To Invent The Future 47

in the 1960s, proprietary software was still largely an unfulfilled promise, but

things were about to change.

The Personal Computer

In 1971 Intel introduced the microprocessor—also called the “computer on a

chip.” With the advent of the microprocessor, the hackers’ dream of having

personal computers at their disposal suddenly became a possibility. For some,

the personal computer came to represent the ultimate tool for giving people

access to the power of computer technology. For others it promised the

realization of the long-awaited desire to have a computer of one’s own.

The first real personal computer was the Altair, introduced in 1974. Unlike

earlier computer hardware developments, the Altair was not the result of a

multi-million dollar research and development effort. It was the result of a

pragmatic attempt to meet a demand among hackers and computer hobbyists for

a small, low-cost personal computer. When the Altair was introduced in 1974, the

machine aimed for a small, but enthusiastic, market of hackers and electronics

hobbyists. The Altair was offered as a kit that had to be carefully assembled, and

this in itself limited its market potential. However, what the Altair clearly

demonstrated was that one could build small personal computers at a fraction of

the cost of other commercially available systems. This signaled the beginning of

the personal computer era.

In 1977 several companies, including Apple Computer, Radio Shack, and

Commodore, began to offer personal computers. Unlike the Altair, these

machines were all complete computer systems that could be put to use without

prior assembly. The only problem was that there was hardly any software

available for them. For the hackers, this didn’t pose much of a problem because

Chapter 248

they could easily write their own software. For the vast majority of new

computer users, however, the desire for software to run on their newly acquired

computers suddenly presented itself as a new and tempting market.

The Killer App

Among the first applications to open up the market for commercial personal

computer software were computer games. The success of the early arcade

computer games in the 1970s had clearly demonstrated that the home computer

market for these types of applications could be substantial, and companies like

Atari, Commodore, and others jumped on the bandwagon. Suddenly there was a

huge demand for talented and highly skilled programmers such as the hackers.

The typical hacker interests and lifestyle was ideally suited for computer games

programming, and during this time period the host of new computer game

companies absorbed many of them.

As more and more computers found their way into homes and small

businesses, it became ever more apparent that software could become the new

growth sector in the computer industry. Two people who realized this early on

were Bill Gates and Paul Allen. In the 1970s, when the first personal computers

became available, Gates was a student at Harvard University, but with all the

exciting developments going on it didn’t take long before he dropped out to start

his own software company called Microsoft in 1975. Microsoft’s first product was

a version of the BASIC programming language for the Intel microprocessor

family used in most personal computers at the time.

Microsoft was not the only actor in the early personal computer software

business. In 1979 a small and unknown company named Software Arts Inc.

introduced a program called VisiCalc. It would revolutionize the computer

To Invent The Future 49

industry in more ways than one. As the first spreadsheet program ever, VisiCalc

opened up a whole new application area for personal computers by putting the

power of financial planning directly into the hands of ordinary users. What is

more important, however, is that VisiCalc also represented the beginning of a

change in people’s perception of the value of software versus hardware. Since

VisiCalc was originally only available on the Apple][computer, many people

bought this machine simply to be able to use the VisiCalc program. What’s more,

VisiCalc offered functionality and features that were not even available on mini

computers and mainframe systems at the time, and this really drove home the

point that the personal computer was not a toy for hackers, hobbyists, and home

gamers, but also a serious business tool. Although VisiCalc was the first software

program to achieve such a defining status, other programs would follow. One

example is Aldus PageMaker (1985), the program that together with the Apple

LaserWriter (1985) created the new area of desktop publishing. PageMaker was

made possible by the introduction of Apple Computer’s Macintosh model in

1984. The graphical user interface of the Macintosh enabled software makers to

explore new application areas such as desktop publishing. Again we see that

people began to buy Macintoshes just to be able to use the PageMaker program

for desktop publishing. Software was now becoming more important than the

hardware on which it ran.

Apple, Microsoft, and the IBM PC

As with most other computer manufacturers in the 1970s, the personal computer

took IBM by surprise. Since well before World War II, the company had been far

and away the dominant manufacturer of data processing and calculating

machinery. Their mainframe systems were tailored to the business markets, and

Chapter 250

hardly anyone in blue suits paid any attention to what was happening at the

grassroots level. Thus, when the first personal computers, the Altair and

subsequently the Apple][, appeared on the scene, IBM did not see them as any

threat to their hegemony. The relative quick success of these small and

inexpensive systems, however, soon alerted IBM to the fact that future market

opportunities might lay in personal computing. For this reason a new division of

IBM was established in Boca Raton, Florida to build and manufacture an IBM

personal computer.

Apple’s success with the Apple][model propelled the little startup company

to the forefront of the rapidly growing personal computer industry. The Apple][

did not only benefit from the excellent designs of its creator, Stephen Wozniac,

but far more important was the fact that hundreds of independent programmers

and small software companies provided a large base of software for it. The Apple

][was, in effect, the first computer to demonstrate the power of open standards

both with regard to hardware extensibility and in regard to software.

When the first IMB PC was introduced in 1981, it was, unlike the IBM’s other

computer systems, specifically designed to embrace the open standards concept.

It was built around an open standards hardware architecture much in the same

way the Apple][had been five years earlier, and this allowed third party

developers to provide PC users with a host of add-on technologies that IBM

alone could not, or would not, have done. More importantly, however, was the

fact that its system software was also intended to adhere to open standards.

When the PC was created, its designers wanted to get the operating system from

an already established vendor. This led IBM to Bill Gates and Microsoft. While

Microsoft at the time did not have an operating system that they could sell, Bill

Gates immediately realized what a golden opportunity had just knocked on his

To Invent The Future 51

door. He promised IBM that he would deliver an operating system for the PC,

and with that deal Microsoft embarked on one of the most remarkable business

adventures in history—one that would make Bill Gates the richest man in the

world.

The deal between Microsoft and IBM over the PC operating system known as

MS-DOS (Microsoft Disk Operating System) sealed the fate of the personal

computer software industry for many years to come. By controlling the PC’s

operating system, Microsoft suddenly had both a major source of income to

further the company’s growth, and complete control over the standards upon

which new software was created. The alliance between the IBM PC and

Microsoft’s MS-DOS operating system software soon became a serious

competitor to Apple Computer and its line of Apple][machines. In the early

1980s Apple therefore began development of a new computer that would meet

this competition and help the company maintain its role as a market leader. The

result of Apple’s effort was the Macintosh introduced in 1984. The Macintosh

personal computer, with its groundbreaking graphical user interface, was a major

achievement and a milestone in the history of modern computing. Still, it failed

to make the impact that its creators had hoped for. With the Macintosh, Apple

had forgotten its own open standards lesson that had served them so well with

the Apple][. The Mac was a closed proprietary system both with regard to its

hardware and software. The first Macintosh models did not have any hardware

expansion capabilities, and the operating system, despite its elegant and user-

friendly concepts, was considered cumbersome and hard to write programs for.

Although Apple had quite some success with the Macintosh, the IBM PC and

Microsoft had gotten the upper hand.

Chapter 252

Steve Jobs presents Macintosh, an “insanely great” computer. 1984.

Due to the PC’s open standards, a new generation of computer manufacturers

began to appear on the stage in the 1980s. These so-called clone-makers built

personal computers that for all intents and purposes were copies of IBM’s PC.

The IBM-compatible clones soon became IBM’s most serious competitors. They

could offer personal computers with the same MS-DOS operating system as the

IBM PC, thus allowing their machines to run the same software as the PC, and

they could sell their machines at a much lower cost. Although the low cost of

these clone PCs certainly contributed to their popularity, it was the fact that they

To Invent The Future 53

ran Microsoft system software, and therefore could take advantage of the rapidly

growing software base for the PC, that mattered to most new computer buyers.

As Microsoft strengthened its grip on the personal computer software market in

the 1990s with its Windows operating systems, its only real competitor, Apple,

fell further and further behind. The windows systems were close imitations of the

Macintosh’s graphical user interface, and this, in effect, eliminated the last

substantial advantage Apple had over Microsoft. By the end of the decade

Microsoft had secured a monopoly on the computer software market—the vast

majority of computers made in the world were now Microsoft machines.

The Return of the Hackers

By the mid 1990s, software had made Bill Gates the richest man in the world. His

software empire stretched to all corners of the globe, and Microsoft products

influenced people’s lives in ways that only a handful of technologies have done.

Only 20 years earlier few would have predicted that something like this could

happen—that software would become such a powerful technological and socially

transformative force. The collaborative code-sharing communities of the hackers

seemed to have all but disappeared in the face of the new and powerful

commercial software industry. Under the shiny surface of commercialism,

however, a new generation of hackers was forming a new movement. Linked

together via the Internet and the World Wide Web, this was a global movement

vastly bigger and more resourceful than prior hacker communities. Many in the

new hacker generation were born after the advent of the personal computer, but

they were still driven by the same fascination for computer programming that

had characterized the first hackers 30 years earlier.

Chapter 254

The hacker movement exists, like any other sub-culture, in a state of

opposition to a main dominating culture. For the first hackers, the opposition

was directed at what they considered the oppressive and exclusionary

mainframe culture. For the new generation of hackers, the opposition more and

more came to be directed at Microsoft and what was perceived as the company’s

imperialistic attempts to control and dominate software development with

technically inferior products. The hackers had a cause to rally around, now they

needed the means to fight back against software imperialism. The project that

hackers flocked to was the GNU/Linux operating system. GNU/Linux

represented both interesting programming challenges, as well as an alternative to

Microsoft’s Windows operating systems. Linked together via the Internet, and

aided by collaborative tools such as Email, Usenet, Internet Relay Chat, and the

World Wide Web, the new global hacker movement of the 1990s embarked upon

a formidable project: to create a new Unix-based operating system that could

change the world.

The history of the GNU/Linux project and the new hacker movement is

covered in more detail in the next two chapters. In what follows I will focus on

some of the important software developments that helped build the

infrastructure for communication and collaboration among hackers on the Net in

the 1980s and 1990s.

Email

By 1990, the digital computer network that we know as the Internet was already

a mature infrastructure for worldwide communication and exchange of

information. The Unix-based TCP/IP (Transmission-Control Protocol/ Internet

Protocol) protocols, first deployed on the ARPANET in 1982, had become the

To Invent The Future 55

ubiquitous standard for facilitating traffic across the digital data network, and

combined with the growing popularity and affordability of Unix-based systems

in the 1980s such as AT&T Unix, BSD, Sun OS and others, this led to a rapid

network expansion that accelerated into the 1990s. Although the inventors and

designers of the ARPANET had conceived of the network as primarily a system

for resource sharing, entrepreneurial users and developers soon found that it

could also be an excellent system for messaging and communication of a more

social kind. A good number of these communication-oriented network

applications that today are the mainstay of electronic communication came about

as “unsanctioned hacks.” A good case in point is email, arguably the most

important and widespread Internet application ever.

In 1971, Ray Tomlinson, an engineer with Massachusetts-based Bolt Beranek

and Newman, (a research and development company hired by the United States

government’s Department of Defense to develop the ARPANET) came up with

the idea of using the ARPANET to send electronic mail messages to users in

remote locations. The idea of using computers to send electronic messages was

not that revolutionary in itself. By the time Tomlinson started working on email

in late 1971, users of time-sharing systems had already had the ability to send

electronic messages to one another for quite some time. The significance of the

new email system, however, was that electronic messages could now be sent

across a network of remote computers, thus eliminating geographical barriers in

the communication between people. Sending messages to colleagues in the room

next door had a certain but somewhat limited usefulness, sending messages to

colleagues half a world away and getting immediate responses on the other

hand, opened up a whole new set of possibilities. It is interesting to note that

email, just like most of the other technologies that I discuss in this study, was

Chapter 256

very much a hacker creation. According to Tomlinson himself, he created it

“mostly because it seemed like a neat idea… there was no directive to go forth

and invent e-mail” (Campbell). Email was, in other words, a neat hack that

Tomlinson did because he enjoyed the challenge. This becomes even more

apparent when Tomlinson explains how the system was actually implemented.

At the time, he had written a simple file-transfer protocol named CPYNET that

would act as a bridge to carry data from one computer to another, and this

provided the infrastructure that he needed to implement an electronic mail

system. He explains:

I had two programs. One was called SNDMSG, which was used for

composing messages to be put in the mailbox of another user in a time-

shared computer. There were versions of SNDMSG from Berkeley and

MIT, but I recoded it. Another program was an experimental FTP

program. I wrote a version to act as a server, another to act as a client, to

specify what should be transferred, then send the data of the file to the

other computer. I took those two programs and put them together with

some glue software, the sticky stuff. Rather than getting the source from a

file, you'd get the source from the buffer of the editor. And instead of

simply writing the file at the remote end, you would append the

characters to the mailbox file. The new message would follow the earlier

message that would already be there.

And then there's a thing that everyone remembers, or associates with e-

mail, which is the @ sign, which gave the editor a way to specify the

recipient. You had to have a way of separating the user and the computer

To Invent The Future 57

name. In English the @ sign is obvious, in other languages it isn't. But

being the only preposition on the English keyboard, it just made sense.

(Festa)

The development of email, or network mail as it was called at the time,

happened to coincide with the design and implementation of the ARPANET file-

transfer protocol, and when word about Tomlinson’s experimental email system

got out, the decision was made to include it for general use on the ARPANET. In

this manner, email came to be a standard feature in the early days of the

ARPANET, and its success was almost instantaneous. A study conducted in 1973

concluded that at the time “three-quarters of all traffic on the ARPANET was

email” (Hafner and Lyon).

The first electronic email-based communities on the ARPANET grew up

around mailing lists of various sorts. Since then email systems have been refined

and expanded upon numerous times by many programmers, but from the users’

point of view little has changed since Tomlinson’s original conception of

electronic network mail. To this day, email remains a convenient and flexible

medium to communicate with colleagues, stay in touch with friends and family,

or discuss topics of common interest with strangers elsewhere on the Net.

Usenet

Although email has remained a vital medium of communication among hackers,

other media has also been used extensively. The perhaps most popular and

influential one in the 1980s and early 1990s was Usenet, also called NetNews or

simply News. Like most of the technologies mentioned in this study, Usenet was

not created because some government agency or commercial software developer

Chapter 258

thought there would be a need for it. It happened simply because a group of

dedicated graduate students wanted to make it happen.

The idea that was to become Usenet was born in 1979 by Duke University

graduate students Tom Truscott and Jim Ellis. Feeling excluded and left out from

the ARPANET, they decided to create their own “General Access Unix Network”

with the aim of connecting people with a common interest in Unix. Steven

Daniels, also a graduate student at Duke, and who wrote the first C-based News

program (A News), explains:

We (or at least I) had little idea of what was really going on on the

ARPANET, but we knew we were excluded. Even if we had been allowed

to join, there was no way of coming up with the money. It was commonly

accepted at the time that to join the ARPANET took political connections

and $100,000. I don't know if that assumption was true, but we were so far

from having either connections or $$ that we didn't even try. The `Poor

man's ARPANET' was our way of joining the Computer Science

community and we made a deliberate attempt to extend it to other not-

well-endowed members of the community. (Hauben and Hauben)

With the help of Steve Bellovin, a graduate student from the neighboring

University of North Carolina at Chapel Hill, the group soon had a small

experimental network running between Duke University (duke), University of

North Carolina at Chapel Hill (unc), and the Physiology Department of the Duke

Medical School (phs). The News software ran on Unix machines linked together

by homemade 300 baud autodialer modems. The system was designed so that an

article or news item posted from one of the network nodes would propagate to

To Invent The Future 59

other nodes whenever the autodialer opened a connection. In this way, Usenet

would automatically synchronize all the information in the network and make it

available to users in a timely and organized manner. The first public presentation

of Usenet was made in January 1980 at the academic Usenix meeting in Boulder

Colorado. The response from the conference participants was overtly positive,

and this encouraged the group to go on and create a public release of the Usenet

software for general distribution at the 1980 Usenix summer meeting.

Documentation accompanying the distribution stated that, “[a] goal of USENET

has been to give every UNIX system the opportunity to join and benefit from a

computer network (a poor man's ARPANET, if you will)” (Hauben and Hauben).

To the surprise of its creators, Usenet grew slowly at first, but when the

University of California at Berkeley joined the network by 1981, the expansion

rate increased exponentially as links to the ARPANET began to appear in

numbers. Between 1979 and 1988 the number of Usenet nodes grew from 3 to

more than 11,000, and the newsgroups hosted within were no longer limited to

just Unix discussions, they now spanned a vast array of subjects (Hauben and

Hauben).

For hackers who might have found themselves as outsiders in their real-

world communities, Usenet and BBS (Electronic Bulletin Board) systems that

began to appear at the same time (Christensen), provided important escape

hatches into new digital communities where they could connect with like-

minded individuals who understood their vocations and with whom they could

share their interests. In the case of Linux, to be discussed in depth in the next

chapter, the news group comp.os.minix, for instance, was an exceedingly

important community in the early days as Linus Torvalds strived to conceive and

implement his new operating system. Later on, other news groups as well as

Chapter 260

mailing lists would fulfill similar functions and help bring more people into the

thriving Linux community.

IRC and Other Chat Systems

Whereas email and Usenet proved to be flexible and powerful asynchronous

modes of communication, various chat systems became popular media for online

synchronous communication. Chat systems in various forms had existed on

ARPANET and other networks since the early days, but during the 1980s their

popularity and use grew to such an extent that systems administrators became

seriously worried about the load they presented on network traffic. In February

of 1985, for example, Henry Nussbacher of the Weizmann Institute of Science in

Israel conducted a study, concluding that “CHAT rebroadcasters present a very

large and growing threat to the BITNET network” (Nussbacher). He went on to

recommend that “all people receiving this mail should examine their system for

CB CHAT systems and inform the author(s) that running such a system is not

allowed.” Nussbacher raised some valid concerns since in the BITNET network,

messages took priority over file transfers, which meant that in times of high chat

volumes file transfers could grind to a halt and thereby obstruct “legitimate” use

of the net. Not everyone was willing or able to heed Nussbacher’s warning,

however. A rapidly growing number of people found online chatting to be not

only fun and useful, but also highly addictive, and thus the use of chat systems

continued unabated.

One of the best-known chat systems on BITNET in the 1980s was Relay, a

program written by Jeff Kell of the University of Tennessee-Chattanooga in 1985.

It became a smash hit that propelled online chatting to even greater volumes. As

a result, by 1987 Relay was on the verge of becoming a victim of its own success,

To Invent The Future 61

not primarily due to the network or CPU load, but because of an increasing

number of unruly users who logged in “just to play” and cause problems for the

system administrators (Kell).

In the 1990s, the most popular chat program was Internet Relay Chat,

generally known as IRC. Jarkko Oikarinen, a systems administrator at the

University of Oulu in Finland, wrote the original IRC in the summer of 1988. In

his job he had a lot of free time on his hands, and part of this time was spent

running a public access BBS system (OuluBox) at the university. According to

Oikarinen, the ideas behind IRC were inspired by a desire to make the

university’s BBS more useful by adding “USENET News-kind of discussion and

groups […] in addition to real time discussions and other BBS related stuff”

(Oikarinen). In the development he also borrowed ideas and concepts from both

BITNET Relay Chat, the Unix person-to-person Talk utility. After the first IRC

server was up and running on his local machine, Oikarinen sent copies of IRC to

friends at other universities in southern Finland, and pretty soon the new chat

program had a good size user base among students and academics in Finland.

Encouraged by the success at home, Oikarinen says he then “contacted some

friends […] through BITNET Relay and asked if they would try this program.

Internet connections did not yet work from Finland to other countries, so they

could not connect to the Finnish network” (Oikarinen). The recipients of IRC set

up their own chat servers and passed along copies to their own friends. In this

manner, the IRC program spread quickly, and soon new IRC chat servers were

popping up all over the Internet.

IRC first gained international fame during the Persian Gulf War of 1990-91

when hundreds of users tuned into IRC channels such as #peace to hear real-time

reports from ordinary people in and around the war zone. The news that was

Chapter 262

mediated via IRC had a real personal, authentic, and down-to-earth quality to it

that in great part contributed to the growing fascination with IRC. In the summer

of 1990 there were 38 IRC servers. During the Persian Gulf War, peak usage went

up sharply from 100 to 300 simultaneous users. The system continued to grow

and spawn new networks such as Undernet, DalNet, EFnet, and others. Another

major peak occurred in 1996 when id Software released its highly anticipated

first-person shooter game Quake. The IRC channel #quake saw more than 1500

users, which made it the largest and most active channel on all the IRC networks.

By the end of the 1990s IRC served well over 50,000 users, and although the

competition from new chat and instant messaging systems was becoming fiercer,

IRC still continued to serve as an important meeting place for hackers and others

interested in free and open source software.

The World Wide Web

While the Internet technologies that I have discussed thus far all contributed

significantly to the growing popularity of the Internet and its predecessors, no

single technology meant more for the astonishing growth and adoption of the

Net in the 1990s than the World Wide Web (hereafter referred to as WWW or the

web). In the course of just a few years, the Web totally changed the Internet

landscape and made it not only attractive and accessible to scores of new users,

but also for the first time to commercial interests, business, and industry. The

business world’s discovery, and subsequent adoption, of the Internet was made

possible by deregulations and lifting of restrictions on commercial use in the

early 1990s; but it was the Web that would become the real vehicle for the

commercialization of the Internet.

To Invent The Future 63

Tim Berners-Lee, inventor of the World Wide Web.

In the late 1980s the inventor and principal designer of the World Wide Web,

Tim Berners-Lee, was working on ideas for a new information management

system for CERN, the European Organization for Nuclear Research. His ultimate

goal was to create a system that would constitute a “shared information space

through which people (and machines) could communicate” (Berners-Lee “The

World Wide Web”). Based on personal experiences with his own information

management system, Enquire, written in 1980, and building on the ideas of

people like Vannevar Bush (Memex, 1945), Doug Englebart (NSL), and Ted

Nelson (Hypertext), in 1989 Berners-Lee came up with a proposal, which in

essence became the first conceptualization of the World Wide Web (Berners-Lee

“Information Management”).

Chapter 264

While the first proposal failed to materialize into a concrete project, the same

proposal resubmitted two years later met with approval, and in October of 1990

Berners-Lee officially began working on the system that was to become the

World Wide Web. In the fall of 1990, Berners-Lee was joined by among others

Robert Cailliau, Nicola Pellow, and Bernd Pollermann, and the project picked up

pace quickly. By Christmas that year functional prototype versions of both a

World Wide Web server and a browser were up and running. The browser had

support for the new native Hypertext Transfer Protocol (http) as well as Usenet’s

nntp protocol. In addition to a graphical browser written for the NeXT operating

system, the team had also developed a more limited non-graphical browser for

line-mode terminals. Along with the software and protocol specifications, the

group also devised a special mark-up language for the Web that they dubbed

HTML (HyperText Mark-up Language). The new mark-up language was derived

in part from the more complex SGML document markup-system, with the

addition of web specific tags and features such as document linking.

In the beginning the only web server available was nxoc01.cern.ch, and the

amount of information that it contained was either related to CERN or the Web

itself. The Web was a small place indeed back in 1990-91, but WWW group was

eager to expand it, and on August 6th, 1991, Berners-Lee made the following

seminal announcement to the Usenet news group alt.hypertext:

The WorldWideWeb (sic) (WWW) project aims to allow links to be made

to any information anywhere. […] We have a prototype hypertext editor

for the NeXT, and a browser for line mode terminals which runs on almost

anything. These can access files either locally, NFS mounted, or via

anonymous FTP. They can also go out using a simple protocol (HTTP) to

To Invent The Future 65

a server which interprets some other data and returns equivalent

hypertext files. […] If you're interested in using the code, mail me. It's

very prototype, but available by anonymous FTP from info.cern.ch. It's

copyright CERN but free distribution and use is not normally a problem.

We also have code for a hypertext server. You can use this to make files

available (like anonymous FTP but faster because it only uses one

connection). You can also hack it to take a hypertext address and generate

a virtual hypertext document from any other data you have - database,

live data etc. It's just a question of generating plain text or SGML (ugh! but

standard) mark-up on the fly. The browsers then parse it on the fly.

The WWW project was started to allow high energy physicists to share

data, news, and documentation. We are very interested in spreading the

web to other areas, and having gateway servers for other data.

Collaborators welcome! (Berners-Lee “Re:Qualifiers”)

Coming from an academic background and working in a scientific research

institution like CERN, for Berners-Lee, sharing the web source code and concepts

was a natural thing to do. In his own words, the principal philosophy behind

both the development of the Web and sharing the technology behind it was that

“academic information is for all, and it is our duty to make information

available” (Berners-Lee “C5-Conclusion”). With the web software freely available

via FTP, people soon started to download and experiment with it. Slowly but

surely the World Wide Web began to spread, first in Europe, later in the United

States, and elsewhere around the world.

Chapter 266

Mosaic: Graphical User Interface for the World Wide Web

At the National Center for Supercomputer Applications (NCSA), a research

institute at the University of Illinois at Champaign-Urbana, the Web had caught

the attention of Joseph Hardin, head of NCSA’s Software Development Group.

He was intrigued by the possibilities that the web seemed to offer and decided to

introduce it to his colleagues. At the time, the Software Development Group had

two undergraduate students, Marc Andreessen and Eric Bina, working with

them, and under Hardin’s direction in early 1993 these two began working on a

web browser for the Unix X-Windows system. The program that Andreessen and

Bina wrote was Mosaic, widely recognized as one of the most significant

contributions to the popularization and growth of the World Wide Web. An

alpha version of the Mosaic browser for X-Windows was released on the Internet

in February of 1993, with Macintosh and Windows versions following later in the

year. In the normal academic tradition, Mosaic was distributed freely from

NCSA’s FTP servers, and before the year was up a rapidly growing number of

people, including the press, were discovering that the Internet had a new feature

called the World Wide Web and a new slick interface called Mosaic. There are

several reasons why the NCSA Mosaic browser came to have such a profound

impact on the future use and direction of the Web. One reason that

commentators often point to is the fact that Mosaic became in essence the first

graphical user interface to the World Wide Web, and indeed to the Internet as a

whole. Contrary to popular belief, however, Mosaic was not the first graphical

web browser. Berners-Lee’s original WorldWideWeb (sic) browser for the NeXT

had a graphical interface and the ability to show graphic web content, and so did

other early browsers for the X-Windows system such as the Finnish Erwise

To Invent The Future 67

Marc Andreessen. Co-author of the NCSA Mosaic web browser and co-founder of

Netscape Communications Corporation.

browser or Pei Wei's Viola browser. Both of these browsers were developed by

students and released in the spring of 1992, almost a year before Mosaic became

available. Still, Mosaic had one small but incredibly powerful new feature that set

it apart from the competition; it was able to display in-line images. The creators

of Mosaic had, on their own initiative, added a new HTML tag called IMG that

allowed content creators to easily incorporate graphics directly into their web

pages. Since Mosaic was the first browser to have this feature, it quickly became

the browser of choice for web authors and, by extension, readers as well. Another

reason for Mosaic’s success must be attributed to its early availability on

consumer platforms. While most early browsers, including Berners-Lee’s

WorldWideWeb, were written for professional Unix systems, Mosaic was readily

available for both Mac OS and Windows early on.

Chapter 268

Conclusions

In this chapter I have looked at some of the most important developments in the

first fifty years of the history of software. Unlike the notion of the special purpose

machine born out of the Industrial Revolution, the modern computer as it

materialized after World War II was a truly universal machine. Once people

realized the significance of this concept, software became one of the most

important areas of research and development within the new fields of computer

science and engineering. The invention of the compiler and the first high level

programming languages in the 1950s made computers more accessible and

helped open up commercial markets. Throughout the 1960s much of the scientific

research on software was directed toward the development of general-purpose

tools and concepts. At the same time, students, who for the first time were able to

become involved with computers, developed a whole new hacker culture

devoted to programming. The 1970s and 80s were the times when computers

became machines for everyone. This was made possible by the invention of the

microprocessor and the personal computer, but it was software such as computer

games, word processors, spreadsheets, desktop publishing and more which was

the true driving force behind it all. In the 1990s the computer morphed into yet

another type of device, this time with a focus on communication. The evolution

of the Internet and its uses was driven to a significant degree by advances in the

software communication technologies associated with it. Most of these

technologies were developed by the group of people that I previously referred to

as the hackers. From email to Usenet to IRC and the World Wide Web, the

hackers stood behind many of the technologies that changed the face of

computing in the 1990s. Most importantly, however, the hackers were also

largely responsible for the development of the very infrastructure of the Internet,

To Invent The Future 69

the Unix-like operating systems that drove it all. The history of this fascinating

development is the focus for the next two chapters.

Chapter 270

3

Free as in Freedom

The Story of BSD and GNU/Linux

 “Free software” is a matter of liberty, not price. To understand the

concept, you should think of “free” as in “free speech,” not as in “free

beer.” –Richard Stallman

Operating systems are some of the most complicated pieces of software ever

built. As Richard Stallman, leader of the free software movement points out:

“With an operating system you can do many things; without one you cannot run

a computer at all” (Stallman “The GNU). For this reason, operating systems have

continued to occupy the imagination and the creative talent of hackers up until

the present day. The following case study looks at the history of the Unix

operating system and its derivatives BSD and GNU/Linux. In the context of this

study, the history of these systems is significant because it illustrates how

hackers have appropriated a technology that was originally developed for

scientific research purposes and made it their own.

The chapter opens with an overview of the early history of time-sharing

systems. Due to their hands-on character, these systems caught the attention of

Chapter 372

Milestones and influences in the evolution of the BSD and GNU/Linux operating

systems.

hackers early on, and many of the principal actors in this story cut their first teeth

on the experimental systems that were being pioneered at places like the

Massachusetts Institute of Technology in the 1960s. The main focus of the

chapter, however, is an analysis of the development of the BSD and Linux

variants of Unix spanning almost three decades from the mid 1970s until the year

2000. In the course of creating these two systems and related software, the

hackers have situated themselves as a community with shared interests, values,

ethics, and goals that are manifested through the philosophy of free software and

Free as in Freedom 73

the concept of open source. Through their appropriation and adaptation of Unix

technology, and with the help of the Internet, the hackers have also forged new

collaborative models of development that by the turn of the century promised to

change the face of software engineering.

Time-Sharing and the Roots of Unix

During the 1950s, advances in digital computing not only produced faster and

more versatile hardware, it also spawned a new area of research centered on the

development of software solutions ranging from operating systems to

programming languages. Still in its infancy, digital computing posed an endless

array of interesting challenges both of a practical engineering nature, and of a

more theoretical and intellectual nature. One of the challenges that rose to

prominence around 1960 was the question of how computers could be used in

ways that took better advantage of both the technical advances that had been

achieved, and that was better suited to face new problems and challenges in the

emerging area of software engineering.

In the 1940s and 50s, the predominant mode of using computers was through

a method known as batch-processing. This was a scheme that had been used with

punch-card data processing machinery since the late 19th century, and meant in

essence that users interacted with the machine in an asynchronous fashion. A

user had to prepare her data, for example a computer program, in advance, then

take it to the computer were it was placed in a queue. She then had to wait to

obtain the results until the computer had worked its way through all prior jobs in

the queue. This could take hours or even days. For a programmer, batch

processing posed several significant problems. For example, if the computer

encountered a bug while running a program, it would stop and return an error

Chapter 374

message. The programmer would then have to take the program back to her

office, fix the problem and return to the computer and run it through the batch

system again and again until the program finally ran the way it was supposed to.

Although batch processing was the order of the day in the 1950s, alternative

models did exist, if only in very experimental ways. Between 1946 and 1951, a

group of engineers and scientists working under the direction of Jay Forrester at

MIT had developed “Project Whirlwind,” a digital computer using a

groundbreaking random-access magnetic-core memory technology that Forrester

had invented. Whirlwind was originally intended to be a general-purpose flight

simulator for the United States Navy, but over time it evolved into what became,

in essence, the world’s first real-time general purpose computer (cf. Redmond

and Smith). By 1960 technical advances such as the transistor-based TX-0

computer developed at MIT’s Lincoln Lab in late 1957, in combination with CRT-

type monitors, further demonstrated the promise of real-time digital computing.

With the technical opportunities at hand, it didn’t take long for the MIT research

scientists to start thinking about ways to implement software solutions to make

real-time computing a reality. What took place during this process was the

beginning of a new paradigm in the way people use computers. That paradigm

would be known as time-sharing.

John McCarthy, one of the pioneers behind the concept of time-sharing,

explains that “by time-sharing, I meant an operating system that permits each

user of a computer to behave as though he were in sole control of a computer, not

necessarily identical with the machine on which the operating system is running”

(McCarthy “Reminiscences”). McCarthy had first started thinking about time-

sharing as early as the fall of 1957, when he first arrived at MIT’s Computation

Center in Cambridge, Massachusetts. In a memo from January of 1959, McCarthy

Free as in Freedom 75

outlines his thoughts on the benefits and implications of such a system. He

begins by saying that the goal is to develop “an operating system for it [IBM 709]

that will substantially reduce the time required to get a problem solved on the

machine.” He goes on to say that “I think the proposal points to the way all

computers will be operated in the future, and we have a chance to pioneer a big

step forward in the way computers are used” (McCarthy “A Time-Sharing”).

McCarthy’s ideas were met with enthusiasm among his colleagues at MIT,

and over the next couple of years the research scientists there worked on various

ways to implement a system in which users could share the use of one computer.

Much of this early work involved hardware modifications to IBM-machines on

which the time-sharing system was implemented, something that required a

close collaboration with IBM. The first tangible result of the efforts to build a

time-sharing operating system was the Compatible Timesharing System, CTSS

for short, and so named because it had to be compatible with existing batch-

processing systems that were also in use at the time. CTSS was developed under

the direction of Fernando J. Corbató of MIT’s Computation Center and first

unveiled in the fall of 1961. By 1965, CTSS had been implemented to run on a

modified IBM 7094. It could support 30 simultaneous users, and clearly

demonstrated that computers could be utilized much more efficiently and

creatively when users were allowed to work with the machine in real time.

Due largely to the success of CTSS and the promise of time-sharing, in 1963

MIT established Project MAC (Multiple Access Computers/Man and Computer),

whose main focus was to further the research and development in this area. A

significant portion of the funding came from the U.S. Department of Defense’s

Advanced Research Projects Agency (ARPA). The project had two prongs, one of

which was the development of a new time-sharing operating system dubbed

Chapter 376

Multics (Multiplexed Information and Computing Service) led by Corbató.

Multics was an ambitious research project where “one of the overall design goals

is to create a computing system which is capable of meeting almost all of the

present and near-future requirements of a large computer utility” (Corbató and

Vyssotsky). It was designed to be a true time-sharing system, and in order to be

as platform independent as possible, the whole operating system was to be

implemented in a new high-level programming language from IBM called PL/1.

Other cutting-edge features included virtual memory and support for multiple

processors. In 1964 the MAC team chose a GE-645 machine from General Electric

(GE) for the first implementation of Multics. A year later, Bell Labs decided to

acquire the same type of machine and subsequently became involved in the

Multics project with MIT and GE. Although the project now had significant

resources at hand, the development did not progress as quickly or as smoothly as

one had hoped. The choice of PL/1 as the implementation language slowed

down the progress, partly because it was harder than expected to implement it

on the GE-645, and partly because it took a lot longer than anticipated to produce

a decent compiler for it. Several times the Multics project came close to

cancellation, and in April of 1969 Bell Labs decided to withdraw from the project

altogether. A few months later, in October of that year, an early version of

Multics finally became operational (“Multics History”). Although Multics never

became a widely used system, as a research project it was an important stepping-

stone in operating system design. Many of the key features and concepts found

in later systems were invented and first appeared in Multics, and several of the

project members later went on to become key figures in computer science. Two of

those people were Bell Labs researchers Ken Thompson and Dennis Ritchie.

Free as in Freedom 77

Unix

After Bell Labs withdrew from the Multics project, Thompson, Ritchie, and a few

others began searching for ways to create an alternative to the Multics operating

system. Ritchie explains:

What we wanted to preserve was not just a good environment in which to

do programming, but a system around which a fellowship could form. We

knew from experience that the essence of communal computing, as

supplied by remote-access, time-shared machines, is not just to type

programs into a terminal instead of a keypunch, but to encourage close

communication. (Ritchie “The Evolution”)

Throughout 1969, Thompson in particular spent a good deal of time

experimenting with design and implementation of core components of a new

operating system. These included a hierarchical, Multics-like file system, an

assembler for implementation of programs, a command interpreter (shell) and a

small set of utilities such as copy, print, and delete for easy file manipulation.

During this time, Thompson also wrote a game named Space Travel (a simulation

of the movement of stars and planets in the solar system) that served as “an

introduction to the clumsy technology of preparing programs for the PDP-7”

(Ritchie “The Evolution”). With these basics components in place, Thompson

recalls that he then “picked up a couple of users, Doug McIlroy and Dennis

Ritchie, who were interested in languages. Their criticism, which was very expert

and very harsh, led to a couple of rewrites in PDP-7 assembly” (Cooke et al). A

new operating system was taking shape, but according to Ritchie, it was “not

until well into 1970 that Brian Kernighan suggested the name ‘Unix,’ in a

Chapter 378

Ken Thompson (left) and Dennis Ritchie in the 1970s

somewhat treacherous pun on ‘Multics,’ [that] the operating system we know

today was born” (Ritchie “The Evolution”).

The earliest versions of the Unix operating system (V1-V3) were written in

assembler. This ensured that the system was fast and responsive, but it was not

particularly portable since its code was highly machine-specific. Another

drawback of the assembly language used in the early implementations of Unix,

according to Ritchie, was that it did not have any mechanisms such as loader and

link-editor, which meant, among other things, that one could not make use of

libraries. Every program had to be complete in itself, and this led to a significant

code redundancy (Ritchie “The Evolution”). In an effort to surmount these

problems Thompson first attempted to re-implement the system in a language

called BCPL. He says, “I thought [it] was a fairly straight translation, but it

turned out to be a different language so I called it B, and then Dennis took it and

added types and called it C” (Cooke et al). With the advent of C, Thompson and

Ritchie had a development tool that supported both high-level portability and

modularization and low-level efficiency through the incorporation of assembly

Free as in Freedom 79

code. Thompson says, “we tried to rewrite Unix in this higher-level language that

was evolving simultaneously. It's hard to say who was pushing whom—whether

Unix was pushing C or C was pushing Unix” (Cooke et al). The first C

implementation of Unix was released as version V4 in 1973.

Although Unix was developed in the setting of a traditional research

laboratory, namely AT&T’s Bell Labs, its creation had many similarities with that

of a hacker system. According to Ritchie, “it was never a ‘project’; it was not

designed to meet any specific need except that felt by its major author, Ken

Thompson, and soon after its origin by the author of this paper, for a pleasant

environment in which to write and use programs” (Ritchie “Retrospective”).

Perhaps for this very reason Unix quickly became the system of choice for

hackers, programmers, and system administrators alike. It was open and

minimalist, yet powerful and flexible. It allowed its users complete access to the

inner workings, but it also had a rigorous permission system in place that

ensured the necessary stability needed in a multi-user environment. In

combination with Dennis Ritchie’s C programming language, Unix became an

ideal environment for program development, but perhaps more important, it

became one of the most portable operating systems ever made. By the year 2000

no other operating system ran on more platforms than Unix and its derivatives.

In the remainder of this chapter I focus on two of the systems that came about

because of Unix: BSD and Linux.

BSD: The Berkeley Software Distribution

The origins of the Berkeley Software Distribution, commonly known as BSD, can

be traced back to the Fall of 1973, when Robert Fabry, a professor at the

University of California at Berkeley, learned about Unix from a conference

Chapter 380

presentation by Thompson and Ritchie. This was the first public presentation of

Unix, and Fabry became so interested that he approached the developers to

obtain a copy (McKusick). Berkeley was, at the time, in the process of acquiring a

new PDP-11 mini computer, and Fabry felt that Unix would be a perfect match

for that machine. His reasoning for wanting Unix was quite pragmatic. Due to

anti-trust restrictions imposed on AT&T by the U.S. government, in which the

company was not allowed to benefit commercially from non telephony-related

inventions, AT&T had to sell Unix at a very low cost. Furthermore, for an

additional $99, academic and government institutions could obtain a license to

the system’s source code. Compared to the competition, Unix was also a highly

cost efficient system to run and maintain. Whereas the cost per user on a typical

mainframe multi-user system could easily reach $50,000, the cost per user on a

mini-system running Unix could be as little as $5,000 (Leonard “BSD Unix”).

After Unix version V4 was installed at Berkeley in 1974, it quickly began to

outpace the existing batch processing system in terms of popularity, especially

among the students. It was not, however, until Thompson, himself a graduate of

the University of California at Berkeley, arrived to spend the 1975-76 academic

year as a visiting professor in the Computer Science department that a more

genuine interest in the inner workings of the system arose. During his tenure at

Berkeley, Thompson worked on a revision of the system dubbed V6, and perhaps

more importantly, he taught Unix. For many, learning Unix directly from the

master was a revelation. Fabry recalls, “we all sat around in Cory Hall and Ken

Thompson read code with us. We went through the kernel line by line in a series

of evening meetings; he just explained what everything did. […] It was

wonderful” (Leonard “BSD Unix”). Not surprisingly, students in particular

became fascinated with Unix through Thompson’s teachings. One of those

Free as in Freedom 81

students was Bill Joy, who had just started his undergraduate studies at Berkeley

in the fall of 1975.

Thompson’s presence at Berkeley in the mid 1970s was an important catalyst

for the BSD development that later ensued. On the one hand, he helped create an

intellectual environment in which to study and learn the Unix system; on the

other hand, as an accomplished programmer and hacker he became a model and

a source of inspiration for aspiring young programmers like Joy and others. A

good example of Thompson’s practical influence at Berkeley was a Pascal system

that he “had hacked together while hanging around the [PDP] 11/70 machine

room” (McKusick). As with any other hack, the system had plenty of room for

improvements, something that Bill Joy soon discovered. Joy was at the time

involved in a student-programming project using Thompson’s Pascal system. He

explains:

I tried to write the thing in Pascal because Pascal had sets, which Ken

Thompson had permitted to be of arbitrary length. The program worked,

but it was almost 200 lines long - almost too big for the Pascal system. I

talked to Thompson to figure out how I could make the Pascal system

handle this program. Chuck Haley and I got involved in trying to make

the Pascal system handle it, but the thing was wrong because it was

building the entire thing in core. So I got sucked in, got department help,

and built some hope of receiving enough support eventually to pay for

this program to work under Pascal. (Joyce “Interview”)

According to McKusick, over the course of the year, Joy and Haley “expanded

and improved the Pascal interpreter to the point that it became the programming

Chapter 382

system of choice for students because of its excellent error recovery scheme and

fast compile and execute time” (McKusick). Chuck Haley earned his Ph.D. for his

work on the revised Pascal system and left Berkeley. For Bill Joy, however, it was

only the beginning.

After Thompson returned to Bell Labs in 1976, Joy began to take more and

more interest in the Unix kernel. He had all the source code available, and in the

true hacker spirit soon began to make little improvements, additions and

enhancements here and there. By this time word of the improved Pascal system

had gotten out and requests for it started to come in. It was therefore decided to

put together a distribution of Unix containing the Berkeley enhancements. The

distribution became known as the Berkeley Software Distribution (BSD) and was

built and released by Bill Joy in early 1977.

“Read the Protocol and Write the Code”

In the context of this study, the history of BSD is particularly interesting because

of the way it illustrates a development model for, and the evolution of, a large

collaborative software project. The basis for BSD was, as I have mentioned, the

Unix source code written mostly by Ken Thompson. As such, BSD was not, at

least in the beginning, an operating system in itself. It was, as the name implies, a

distribution of Unix that included certain additions and enhancements developed

by the hackers at Berkeley. In the early days, the most notable additions were Joy

and Haley’s improved Pascal system, and an early version of a small editor that

later morphed into a Unix mainstay tool for text manipulation—vi (McKusick).

The Berkeley hackers’ motivation for creating BSD was, in other words, not part

of a scheme to replace Unix, or even create a new operating system. By

experimenting and playing with the code, they had come up with certain

Free as in Freedom 83

Bill Joy. BSD hacker and co-founder of Sun Microsystems.

enhancements that they thought were clever and useful. When others in turn

came to the same conclusion, sharing the fruits of their work was simply the

natural thing to do.

Over the next few years, Joy produced several new releases of BSD. With each

new release new features and enhancements were added, so that over time BSD

came to have its own distinct flavor. In hindsight, perhaps the most significant of

these additions was the inclusion of the TCP/IP (Transmission Control Protocol/

Internet Protocol) protocols, which appeared in 4.2BSD in 1983. TCP/IP

networking was added to BSD at the behest of The Advanced Research Projects

Agency (ARPA), which was interested in using the system as a standard for

computers on the emerging ARPANET, precursor of the Internet. ARPA’s

reasoning was that it would be much more practical to standardize the network

on software rather than hardware, and BSD, being an essentially free academic

product, fit the bill perfectly (McKusick). On Fabry’s initiative, in 1980 a working

group named Computer Systems Research Group (CSRG) was established to

develop an enhanced version of the then current 3BSD for the ARPA community.

Chapter 384

Fabry hired Bill Joy as the project leader, and with the backing of ARPA and the

organizational framework of the CSRG, BSD’s popularity increased steadily.

Although every copy of BSD was shipped at a nominal cost complete with

source code, contributions and feedback from the user community was,

according to Joy, sparse at first (Leonard “BSD Unix”). He held code destined for

inclusion in the distribution to a very high standard, and he maintained strict

control with every aspect of the project, and this may well have discouraged

people from contributing. Among his colleagues and peers he earned a

reputation for being both an arrogant and a brilliant hacker. Marshall McKusick

says:

 Bill's very good at taking something, [...] saying, ‘OK, this is what I have,

this is where I want to get to, what's the shortest path from here to there?’

His code was ugly, unmaintainable, incomprehensible, but by golly it only

took him two weeks to do an incredible amount of functionality. (Leonard

“BSD Unix”)

Arrogance and brilliance are character traits that almost every true hacker

possesses. Bill Joy’s many and substantial contributions to BSD in the late 1970s

and early 1980s elevated him to stardom within the hacker community. Without

knowing it, he came to represent the kind of personality that has colored many

people’s perception of BSD developers ever since. When once asked how he had

accomplished some particularly clever piece of coding, he remarked in the

proverbial hacker way: “Read the protocol and write the code” (Leonard “BSD

Unix”).

Free as in Freedom 85

BSD, A Model for Collaborative Software Development

In the spring of 1982, Bill Joy left Berkeley to co-found a new company, Sun

Microsystems, and the BSD project was eventually taken over by Marshall Kirk

McKusick, another Berkeley graduate student. McKusick was much more

pragmatic and open to input from the user community, and during his tenure

BSD evolved into what was essentially the first large-scale example of what

people would later call an open source project. He says:

The contribution that we made was in developing a model for doing open-

source software ... We figured out how you could take a small group of

people and coordinate a software project where you have several hundred

people working on it. (Leonard “BSD Unix”)

The collaborative model that the BSD group pioneered was one of layers. At

the center of the project sat a core group of people whose job it was to oversee the

project’s overall goals and directions. The middle layer consisted of trusted

contributors who had access to the official source code repository, and who had

permission to commit changes to that repository. The outer layer consisted of

programmers who only had access to read code in the source repository. These

people could submit bug reports and suggestions for improvements, but they did

not have the privilege to make changes to the source code directly.

BSD and AT&T Unix had coexisted peacefully and shared a mutually

beneficial research and development environment from the very beginning, but

when the AT&T monopoly was broken up in 1984, and the company began

efforts to commercialize Unix, the ties between the two began to weaken. In 1992

when the University of California, along with BSDi, a spin-off company from its

Chapter 386

Computer Systems Research Group, began selling a commercial version of BSD,

AT&T sued over copyright infringements. What AT&T had not taken into

account, however, was that due to the long and close collaboration with the BSD

group, their own commercial Unix system also contained massive amounts of

code from BSD, most notably the BSD TCP/IP stack. The University of California

promptly counter-sued AT&T for the same copyright violations. After a

prolonged court battle, the case was finally settled in 1994. BSD was allowed to

continue their distribution, but they had to remove certain files and could no

longer use the trademark Unix. A new release called 4.4BSD was promptly put

together, and under the terms of the lawsuit settlement, anyone using this as a

basis for new BSD-based distributions was out of harm’s way legally.

BSD on the PC

Perhaps the single most important event in the computing world in the 1980s

was the coming of age of the personal computer. By the end of the decade these

affordable machines had reached a level of power and sophistication that

promised to give mini-systems such as DEC’s VAX series, or Sun’s professional

workstations, serious competition. Incidentally, the first effort to create a Unix-

like operating system for personal computers was made by Microsoft as early as

1980. The system Microsoft developed, called XENIX, was based on AT&T’s Unix

System V and was intended for 16-bit microprocessors. When the company, a

year later, eventually decided to develop their own operating system called MS-

DOS for the IBM PC, the XENIX effort was stranded until 1983 when a new

company known as the Santa Cruz Operation (SCO) entered the stage with a

system called SCO XENIX for Intel 8086 and 8088 based PCs (SCO “History of

SCO”). While SCO in the 1980s established itself as a big Unix player in the

Free as in Freedom 87

microcomputer arena, the BSD camp was firmly planted in the world of mini

machines. By 1990, however, more and more people were lamenting the fact that

there was no BSD available for PC. One of those was BSD developer Bill Jolitz.

He felt that the BSD porting efforts were not keeping up with the times, and

together with his wife, Lynne, Jolitz proposed to undertake the job of porting

BSD to the PC. The initial release of the system, dubbed 386BSD, happened on

March 17, 1991 (Chalmers). It was a bootable, but very rudimentary BSD system,

and there were many outstanding issues that had to be fixed and worked out

before it would be truly useful. Over the next year, the Jolitzs worked hard on a

more feature-complete release, and on July 14, 1992, they could proudly

announce:

We are pleased to announce the official release of 386BSD Release 0.1, the

second edition of the 386BSD operating system created and developed by

William and Lynne Jolitz and enhanced further with novel work and

contributions from the dedicated 386BSD User Community. Like its

predecessor, 386BSD Release 0.0, Release 0.1 comprises an entire and

complete UNIX-like operating system for the 80386/80486-based AT

Personal Computer. (Chalmers)

Since 386BSD was released entirely on the Internet via FTP, according to

McKusick, “within weeks [it] had a huge following” (McKusick). The Jolitzes had

expected a few hundred downloads of the system, but in all there were more

than 250,000 (Chalmers). Although the Jolitz’s BSD port was both well designed

and functional, they did not manage to keep up with the inevitable flood of bug

reports and other contributions garnered from the ever-expanding user

Chapter 388

community. They also had their day jobs to consider, and for this reason, work

on 386BSD revision did not proceed as fast as many users wanted. When the

much-revised version 1.0 finally appeared in December of 1993, much of the

initial momentum had been lost. In the time that had passed between the initial

and the final releases, the idea of Unix on the PC had spread like wildfire across

the Internet and several more players emerged in the arena. Three of these came

from the BSD world.

The first one, NetBSD, was formed in early 1993 by a group of avid 386BSD

users who were particularly interested in system portability and multi-platform

support. Their vision was to make a BSD distribution that would run on as many

computer platforms as possible. Between 1993 and 2001, the NetBSD project

released 16 versions of their system, and at the time of this writing (2003), the

system runs on over 45 different platforms (“NetBSD”). In the mid 1990s, the

NetBSD project split in two with the formation of a new group calling themselves

OpenBSD. The principal aim of OpenBSD was to improve the security of the BSD

system, and at the same time make it easier to use for inexperienced system

administrators. The third, and perhaps most influential, spin off from 386BSD

was called FreeBSD. The project was started by Jordan Hubbard, and others, in

1993 in response to what they felt were the Jolitz’s reluctance and inability to

handle and incorporate feedback from 386BSD users (Hubbard). When the

Jolitzes refused to accept their contributions, the FreeBSD group simply decided

to build their own distribution, the first of which was released in December of

1993. Although the various BSD-based distributions for the PC enjoyed a

reasonable amount of popularity in the 1990s, they totally paled in comparison

with another and quite unexpected challenger, Linux. The remainder of this

chapter is devoted to the history of the Linux operating system and how it took

Free as in Freedom 89

the PC Unix market by storm in the 1990s and gave a whole generation a new

perception of how to develop, market and distribute software.

Between 1977 and 2000, BSD evolved from a one-man hack to a Berkeley-

centered cooperative effort to a distributed collaborative endeavor involving

thousands of hackers and programmers all over the world. Along the way, it

contributed significant portions of code and technical design features to almost

every other Unix-like operating system in existence, helped foster the Internet,

and pioneered a collaborative open source model of software development. The

historical significance of BSD runs across all these dimensions, and yet it all

comes down to one thing. In his essay, “Twenty Years of Berkeley Unix,”

longtime BSD hacker and distribution maintainer Marshall McKusick sums it up

with the following words:

The history of the Unix system and the BSD system in particular had

shown the power of making the source available to the users. Instead of

passively using the system, they actively worked to fix bugs, improve

performance and functionality, and even add completely new features.

(McKusick)

GNU’s not Unix

The single most important reason for the resurgence of the collaborative software

development model in the 1990s was the creation and evolution of the Linux

operating system. It represents the hacker movement’s perhaps greatest

achievement, not in technical terms, but because it captured the imagination of a

whole new generation of hackers, computer users and journalists alike, and

brought the notion of collaborative development back into the mainstream of

Chapter 390

software engineering. In order to adequately understand the story of Linux, we

need to go back to the mid 1980s and examine the developments that made it all

possible.

 On September 27, 1983, Richard Stallman, a long-time hacker of MIT’s

Artificial Intelligence Lab, posted the following announcement to the Usenet

newsgroups net.unix-wizards and net.usoft (Stallman “Initial Announcement”):

From CSvax:pur-ee:inuxc!ixn5c!ihnp4!houxm!mhuxi!eagle!mit-vax!mit-

eddie!RMS@MIT-OZ

From: RMS%MIT-OZ@mit-eddie

Newsgroups: net.unix-wizards,net.usoft

Subject: new UNIX implementation

Date: Tue, 27-Sep-83 12:35:59 EST

Organization: MIT AI Lab, Cambridge, MA

Free Unix!

Starting this Thanksgiving I am going to write a complete

Unix-compatible software system called GNU (for Gnu's Not Unix), and

give it away free to everyone who can use it. Contributions of time,

money, programs and equipment are greatly needed.

To begin with, GNU will be a kernel plus all the utilities needed to write

and run C programs: editor, shell, C compiler, linker, assembler, and a few

other things. After this we will add a text formatter, a YACC, an Empire

game, a spreadsheet, and hundreds of other things. We hope to supply,

Free as in Freedom 91

eventually, everything useful that normally comes with a Unix system,

and anything else useful, including on-line and hardcopy documentation.

Having been raised in the academic code-sharing environment of MIT,

Stallman had come to regard the ongoing commercialization of software with

great skepticism and distrust. As he saw it, the traditional gift-sharing economy

of software engineering was gradually being replaced by a commercial

proprietary model designed to take away programmers’ access to code and the

ability to freely share computer programs. Prompted by MIT’s decision in 1982 to

move from their own ITS (Incompatible Time-sharing System) operating system

to DEC’s new proprietary VAX system, Stallman decided it was time to do

something to stem this trend (Stallman “The GNU”). He says:

The answer was clear: what was needed first was an operating system.

That is the crucial software for starting to use a computer. With an

operating system, you can do many things; without one, you cannot run

the computer at all. With a free operating system, we could again have a

community of cooperating hackers—and invite anyone to join. And

anyone would be able to use a computer without starting out by

conspiring to deprive his or her friends. (Stallman “The GNU”)

In January of 1984, Stallman quit his job at the Artificial Intelligence Lab to

begin the GNU project. He felt that this was a necessary move in order to ensure

that MIT could not lay claim to, or place restrictions on, GNU. The name GNU,

says Stallman, “was chosen following a hacker tradition, as a recursive acronym

for ‘GNU’s Not Unix’ ” (Stallman “The GNU”).

Chapter 392

Richard Stallman. Photo courtesy of Sam Ogden.

In his Usenet announcement, Stallman said that GNU, to begin with, would

consist of a “kernel plus all the utilities needed to write and run C programs.”

Being the core of the operating system, the kernel might have seemed like an

obvious place to start; but as it turned out, it would, in fact, be the last piece of

the puzzle to fall into place. Instead, Stallman ended up starting at the opposite

end by writing an editor called GNU Emacs that could be used to implement the

other pieces of the system (Chassell “Interview”). This editor was based on a

macro collection known as Emacs (Editor MACroS) that Stallman had written in

1976 for the ITS editor TECO (GNU “Emacs FAQ”). In view of the future

prospects for GNU, Stallman’s decision to start off with Emacs instead of the

Free as in Freedom 93

kernel was shrewd because it meant that the project could deliver something

useful almost right away. Whether Stallman was consciously aware of this at the

time, or whether it was the result of lucky circumstances is not entirely clear.

What seems quite clear, however, is that had he followed his original intentions

as outlined in his Usenet posting, the GNU project might never have gotten off

the ground. A kernel by itself has almost no practical use. A fully featured, state-

of-the-art editor that could be ported and used freely on any type of Unix, and

Unix-like system, however, was a different proposition altogether.

“Copyleft—all rights reversed”

The first version of GNU Emacs was put up for distribution via FTP in early 1985.

Since many people did not have Net access at that time, and because Stallman

was trying to make a living from writing and distributing free software, he also

set up a small distribution business that sold the program on tape for $150 a

copy. GNU Emacs became an almost instant hit with users, and soon the tape

distribution business became too much for Stallman to handle alone. The success

of GNU Emacs also brought more volunteers to the GNU project, and it was

therefore decided to form a tax-exempt charity organization that would act as an

institutional framework for GNU and its various activities. The Free Software

Foundation (FSF), as the organization was called, was incorporated in October of

1985 with Robert Chassell as founding director and treasurer. Stallman’s aim

with GNU was to create a free alternative to Unix that he could “give away to

anyone” (Stallman “Initial Announcement”). From this and other early references

it is clear that he wanted the software to be gratis. Stallman has since tried to

downplay this fact, something that I will return to in a later chapter. More

importantly, however, he also wanted GNU to be free in the sense that anyone

Chapter 394

could use, copy, modify and redistribute it. Chassell explains: “Richard set the

original goals, which was to create a system that wasn’t even necessarily as good

as Unix but somewhat like Unix with the condition only that it be free and not

restricted” (Chassell “Interview”).

To achieve this goal, GNU needed a license, a binding legal document that

would set forth the terms and conditions for using the software. The license that

the SFS eventually came up with was called the GNU General Public License

(GPL), and it would become perhaps the most important document ever written

by the Free Software movement. In the GPL, users of GNU software are

guaranteed the rights to use, copy, modify and distribute, and programmers who

write the software are protected from companies or individuals who may want to

use their code in proprietary software. If anyone makes a modification and

redistribution of software under the GPL, they are required by the license to give

users of the derivative software the same rights they originally had. This concept

was dubbed copyleft, and it was designed to prevent free software from ever

becoming proprietary and closed source. Furthermore, the GPL became an

important instrument in fostering the self-sustained growth of the free software

community since programmers were required to share their modifications with

the community from which they got it in the first place.

Building an Operating System Bit by Bit

“The easiest way to develop [the] components of GNU,” says Stallman, “was to

do it on a Unix system, and replace the components of that system one by one”

(Stallman “The GNU”). Thus, after he had finished the GNU Emacs editing

environment, he immediately cast his eyes upon what he identified as the next

major component, the developer tools. These were the tools needed to actually

Free as in Freedom 95

implement the remaining parts of the system, and included most notably a

compiler, a debugger, and a set of libraries. Early in the project, Stallman had

made some attempts to get permission to use certain existing compiler tools for

GNU, but when these efforts eventually stranded, he decided to go ahead and

write the compiler himself. C was the language of choice on the Unix platform, so

a C compiler was what he wrote. The GNU C Compiler, popularly known as

GCC, was first released in beta form in March of 1987, with the following official

1.0 release on May 23 that year. More than perhaps any other component of the

GNU system, GCC has been the major driving force in the creation of free and

open source software. Over the years, it has been ported to nearly every Unix

system in existence, and thus, it has provided programmers with a familiar,

multi-platform programming environment that not only saved them thousands

of dollars in licensing fees, but also allowed them to make modifications and

additions for their own particular needs and challenges. Today GCC is known as

the GNU Compiler Collection, and in addition to Stallman’s original C compiler,

it now also contains front-ends for several other popular programming

languages such as C++, Objective C, Fortran, and Java (“GCC”).

Although Richard Stallman was exceedingly important in jumpstarting and

driving the GNU project in the mid 1980s, a growing number of other

contributors also joined the ranks. While many of these people made valuable

contributions to the project, FSF had a hard time getting volunteers to take on

development of major remaining GNU components. Robert Chassell explains:

We had lots and lots of volunteers. I think at that time the number of

people volunteering to some extent or another may have been a few

hundred. It’s hard to estimate because when you think in terms of how

Chapter 396

these people got involved, well, if someone sends a patch to Emacs which

lots of people did, I think of them as a volunteer, but what we were

concerned with, what was more important over the next seven or eight

years, was getting things done that volunteers wouldn’t do. (Chassell)

An example of a component that the volunteers, according to Chassell, were

reluctant to take on was the GNU C library, a set of common functions and

procedures that defines the system calls and other basic facilities. This was a

major undertaking that the FSF felt had to be approached, designed and

implemented in a systematic and thorough way in order to produce a truly

useful resource that would stand the test of time. For this reason, they decided

that the best course of action would be to hire a programmer, Roland McGrath,

rather than be dependent on a volunteer effort. Nevertheless, contributions from

volunteer programmers continued to be important for the GNU project

throughout the 1980s. Chassell says:

People did develop on their own especially things like little utilities

because they aren’t huge projects, or people could add to a project that

was well started like Emacs and GCC, but they wouldn’t start it on their

own because it was too big. So part of the psychology of all this is that it’s

easy to have people start and work on and even complete small projects,

but big projects are more difficult. (Chassell)

By 1990 the GNU system was almost complete to the point where it could be

used by itself. The only major missing part was the kernel, the core of the system

upon which all the other components would run. At the time, Carnegie Mellon

Free as in Freedom 97

University had developed a promising and free microkernel called Mach, and it

was decided to implement the GNU kernel, as a collection of servers running on

top of Mach to implement file systems, network protocols, file access control, and

other vital operating system features. In the finest hacker naming tradition, the

kernel was named HURD which in reality is a pair of mutually recursive

acronyms, where on the first recursive level, the acronym HURD stands for

“HIRD of Unix-Replacing Daemons,” and on the second level, the acronym

HIRD, stands for “HURD of Interfaces Representing Depth.” If we look at the

recursive nature of the name, we’ll see that what it actually represents is an

infinite loop. Incidentally, that is also what came to characterize the whole GNU

HURD project. From the start, HURD was a highly ambitious project that aimed

to create the best and most advanced kernel available. Needless to say,

accomplishing such a feat would not be done in a day, and for this reason, the

project dragged on and on throughout the 1990s. Chassell explains:

I think that Richard and others got seduced by the promise of the GNU

HURD, and it went directly contrary to what he had said in various policy

statements earlier, which was that anything used by a free software GNU

system needs only to be almost as good as Unix. It just needs to be a

suitable replacement. But the theory behind the HURD was that it would

actually be better, and there is a major driving force in people writing code

to write stuff that’s better. It’s a real personal motivator, and I think part of

what happened with the GNU HURD is that people got motivated to do

something that was really better and as far as I can figure out, the GNU

HURD in theory is at least still better than any contemporary operating

system. (Chassell)

Chapter 398

When HURD was first presented publicly at a conference organized by the

FSF in 1996, it was immediately met with skepticism among the hackers. Eric

Raymond, who was also at the conference, remembers talking to Keith Bostic, a

fellow hacker from the BSD community, during a conference break:

Keith gives me this sort of troubled look and says, “So what do you

think?” I looked at him and I said what he was thinking. I said, “it’s

beautiful, it’s elegant, it’s elaborate, it’s ornate, it’s huge and it’s going to

be killed on performance.” Both of us looked at the HURD design and we

said in effect this is not practical engineering, this is computer science

masturbation. That was also, quite symbolically, the first time I met Linus

Torvalds. (Raymond “Interview”)

Linux: Just for Fun

Unbeknownst to the GNU people and just about everyone else, in 1991 a 21-year-

old computer science student at Helsinki University in Finland named Linus

Torvalds started developing his own operating system. At the university,

Torvalds had been introduced to Unix, and in his spare time he had started

playing with a small Unix-like system called Minix that enjoyed a fair amount of

popularity at the time. Minix was a free Unix clone for personal computers

written by the Dutch computer science professor Andrew Tanenbaum and was

first introduced in January of 1987. It was designed to teach students about

operating system design and principles, and for this reason it also came complete

with source code. The rising popularity of Minix was clearly manifested in the

Usenet news group comp.os.minix, where users from all over the world gathered

Free as in Freedom 99

to discuss the system, report bugs and suggest improvements. For Tanenbaum,

the increasing amount of interest in Minix on the Internet, however, was a mixed

blessing. He explains:

MINIX had a 40,000-person newsgroup, most of whom were sending me

email every day. I was going crazy with the endless stream of new

features people were sending me. I kept refusing them all because I

wanted to keep MINIX small enough for my students to understand in

one semester. My consistent refusal to add all these new features is what

inspired Linus to write Linux. (Tanenbaum)

When Torvalds’ feedback and suggestions for improvements of Minix went

largely unanswered by Tanenbaum, he thus decided to take matters into his own

hands. Postings on comp.os.minix suggests that he had started thinking about

doing his own operating system sometime in the spring and early summer of

1991, but it wasn’t until August that year that he made his intentions clear

(Torvalds “Linux History”).

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)

Newsgroups: comp.os.minix

Subject: What would you like to see most in minix?

Summary: small poll for my new operating system

Message-ID: <1991 Aug25.205708.9541@klaava.Helsinki.FI>

Date: 25 Aug 91 20:57:08 GMT

Organization: University of Helsinki

Chapter 3100

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and

professional like gnu) for 386(486) AT clones. This has been brewing since

april, and is starting to get ready. I'd like any feedback on things people

like/dislike in minix, as my OS resembles it somewhat (same physical

layout of the file-system (due to practical reasons) among other things).

I've currently ported bash (1.08) and gcc (1.40), and things seem to work.

This implies that I'll get something practical within a few months, and I'd

like to know what features most people would want. Any suggestions are

welcome, but I won't promise I'll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes - it's free of any minix code, and it has a multi-threaded fs. It is

NOT portable (uses 386 task switching etc), and it probably never will

support anything other than AT-harddisks, as that's all I have :-(.

As opposed to the GNU HURD and Minix kernels, which were both based on

a modern microkernel design, Torvalds’ kernel, which later was named Linux,

was based on a more traditional monolithic design. Most operating systems up

until that time, including Unix, VMS, MS-DOS and others were monolithic

designs where process management, memory management, i/o, and file

handling, etc., were all contained in one single monolithic file. The hacker

Torvalds’ motivation for building his kernel on a monolithic design had

Free as in Freedom 101

Linus Benedict Torvalds. Creator of Linux. Photo courtesy of Linux Online.

primarily to do with concern for efficiency and the processing power of the

personal computers for which he targeted his system. A monolithic kernel, even

though it was not state-of-the-art in system design was, in Torvalds’ opinion,

simply faster and more efficient than a microkernel for small personal computers.

He says, “I am a pragmatic person, and at the time I felt that microkernels (a)

were experimental, (b) were obviously more complex than monolithic Kernels,

and (c) executed notably slower than monolithic kernels” (Torvalds “Linux

Edge”). Tanenbaum, the computer science professor, was not impressed, though,

when he later learned about Linux. In his view, it represented “a giant step back

into the 1970s,” something he explains by adding, “[it’s] like taking an existing,

working C program and rewriting it in BASIC. To me, writing a monolithic

system in 1991 is a truly poor idea” (“Linus vs. Tanenbaum”).

Chapter 3102

Linus Torvalds, however, would not be deterred by such professorial

criticism, and in the middle of September 1991, shortly after the initial

announcement on comp.os.minix, he released Linux version 0.01 on the Internet.

Torvalds had asked people for feedback on things they wanted to see in a new

operating system, and in a posting to the comp.os.minix news group on October

5, 1991, he went one step further and asked people to send him contributions that

he could include in the Linux system. He opened his post with the following

words:

Do you pine for the nice days of minix-1.1, when men were men and

wrote their own device drivers? Are you without a nice project and just

dying to cut your teeth on an OS you can try to modify for your needs?

Are you finding it frustrating when everything works on minix? No more

all-nighters to get a nifty program working? Then this post might be just

for you :-) (Torvalds “Linux History”)

The Minix hackers must really have been ready for a change of pace because

Torvalds soon had a small and dedicated following. By Christmas 1991, in the

span of just four months, Linux had reached version 0.11. One could already hear

the echoes of what would become the mantra of open source development in the

1990s: release early and often. Unlike Richard Stallman and the older hackers that

I have presented in this chapter, Linus Torvalds, born in 1969—the same year

ARPANET was first commissioned by the U.S. Department of Defense—grew up

with the Internet. For him it was a natural arena in which to operate and find

collaborators. While BSD had been largely a Berkeley-centered effort that

Free as in Freedom 103

proliferated mostly in academia due to its focus on mini machines such as the

PDP and VAX, Linux found its primary audience among PC hackers on the

Internet. As the system became more and more functional through frequent

releases and updates, it began to gain momentum and its user base soon

numbered in the thousands. Unlike Unix, BSD, Minix and other systems written

by hackers in academia or by professional computer scientists like Tanenbaum

(who seemed to accept Linux only because “it will get all the people who want to

run MINIX in BSD UNIX off my back,” and who, tongue-in-cheek, chided

Torvalds saying, “be thankful you are not my student. You would not get a high

grade” (“Linus vs.”)), Linux was an operating system written by a hacker for

hackers. Only a year after Torvalds had first started toying with the idea of

writing an operating system, Linux had already outgrown his expectations. In a

post to the email list “Linux-Activists” in May of 1992, Linus Torvalds explains

what motivated him and how it all came about. In addition to its historical

interest, the post is also remarkable in the way that it offers unique glimpses into

the hacker’s mindset (Torvalds “Linux History”):

To: Linux-Activists@BLOOM-PICAYUNE.MIT.EDU

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)

Subject: Re: Writing an OS - questions !!

Date: 5 May 92 07:58:17 GMT

[...] I didn't start off to write a kernel, I just wanted to explore the 386 task-

switching primitives etc, and that's how I started off (in about April-91).

[...] The first thing written was the keyboard driver: that's the reason it's

still written completely in assembler (I didn't dare move to C yet - I was

Chapter 3104

still debugging at about instruction-level). After that I wrote the serial

drivers, and voila, I had a simple terminal program running (well, not that

simple actually). It was still the same two processes (AAA..), but now they

read and wrote to the console/serial lines instead. I had to reboot to get

out of it all, but it was a simple kernel. After that it was plain sailing: hairy

coding still, but I had some devices, and debugging was easier. I started

using C at this stage, and it certainly speeds up developement. This is also

when I start to get serious about my megalomaniac ideas to make "a better

minix that minix". I was hoping I'd be able to recompile gcc under linux

some day... The harddisk driver was more of the same: this time the

problems with bad documentation started to crop up. The PC may be the

most used architecture in the world right now, but that doesn't mean the

docs are any better: in fact I haven't seen /any/ book even mentioning the

weird 386-387 coupling in an AT etc (Thanks Bruce). After that, a small

filesystem, and voila, you have a minimal unix. Two months for basic

setups, but then only slightly longer until I had a disk-driver (seriously

buggy, but it happened to work on my machine) and a small filesystem.

That was about when I made 0.01 available (late august-91? Something

like that): it wasn't pretty, it had no floppy driver, and it couldn't do much

anything. I don't think anybody ever compiled that version. But by then I

was hooked, and didn't want to stop until I could chuck out minix. [...] I

got bash and gcc eventually working under 0.02, and while a race-

condition in the buffer-cache code prevented me from recompiling gcc

with itself, I was able to tackle smaller compiles. 0.03 (October?) was able

to recompile gcc under itself, and I think that's the first version that

anybody else actually used. Still no floppies, but most of the basic things

Free as in Freedom 105

worked. After 0.03 I decided that the next version was actually useable (it

was, kind of, but boy is X under 0.96 more impressive), and I called the

next version 0.10 (November?). It still had a rather serious bug in the

buffer-cache handling code, but after patching that, it was pretty ok. 0.11

(December) had the first floppy driver, and was the point where I started

doing linux development under itself. Quite as well, as I trashed my

minix386 partition by mistake when trying to autodial /dev/hd2. By that

time others were actually using linux, and running out of memory.

Especially sad was the fact that gcc wouldn't work on a 2MB machine, and

although c386 was ported, it didn't do everything gcc did, and couldn't

recompile the kernel. So I had to implement disk-paging: 0.12 came out in

January (?) and had paging by me as well as job control by tytso (and

other patches: pmacdona had started on VC's etc). It was the first release

that started to have "non-essential" features, and being partly written by

others. It was also the first release that actually did many things better

than minix, and by now people started to really get interested. Then it was

0.95 in March, bugfixes in April, and soon 0.96. It's certainly been fun (and

I trust will continue to be so) - reactions have been mostly very positive,

and you do learn a lot doing this type of thing (on the other hand, your

studies suffer in other respects :)

Linus

The Little OS That Could

The Linux operating system that Torvalds invented in 1991-92 was a simple

hacker’s system that might very well have faded into obscurity. It had a working

kernel, just a few essential utilities and tools, and it only ran on Intel X86

Chapter 3106

hardware. By 1998, however, Linux had become a well-known player in the

operating systems world. It had morphed into a major multi-platform OS that

had captured a good portion of the server market and that was starting to make

inroads into the lucrative desktop market. How did this happen? How does one

explain the Linux phenomenon of the 1990s? There is no simple answer, and the

reasons are as complex and manifold as the operating system itself. Part of the

answer, no doubt, is found in the resurrection of the open source concept by,

among others, the BSD group and the Free Software Foundation in the 1980s, and

since then manifested through the hard and dedicated work of thousands of

hackers all over the world. Important parts of the answer must also be sought in

the remarkable growth of the Internet itself, the economic dot.com boom in the

latter part of the 90s, and the commercialization efforts within the Linux

community at that time. I also believe one must seek answers in the 1990s

growing dissatisfaction with the increasingly monopolistic behavior of Microsoft

combined with the lure of anti-establishment hacker subculture. I will return to a

more in-depth analysis of these factors later. In concluding this chapter, however,

I’m going to focus on one significant reason behind Linux’ success; it was a

technology built on the hacker movement’s successful adaptations of the time-

tested Unix technology and was enhanced and expanded upon by its own users

in an intricate collaborative effort.

In his autobiography, Linus Torvalds describes himself as an “accidental

revolutionary” (Torvalds Just for Fun). I believe this is a good characterization.

When he started hacking Linux in the early 90s, Torvalds had no intention of

creating a major new operating system that, by the end of the decade, would

compete head to head with commercial and industrial strength heavyweights

like Microsoft Windows NT and Sun Solaris. All he wanted to do was to hack

Free as in Freedom 107

and learn Unix and to create what in his mind would be a better version of Minix

that he could play with on his PC. What he didn’t realize, however, was that by

developing the Linux kernel, he had incidentally also filled in the missing piece

of the GNU puzzle. Initially, Torvalds had released Linux under a license that

forbade people to make profit from it. That license, however, was soon replaced

with the well-publicized GNU General Public License, according to Torvalds,

because the GNU’s GCC compiler he had included in Linux used the GPL

(Torvalds “Linux Edge”). By licensing Linux under the GPL he not only adopted

GNU’s free software philosophy that encouraged people to use, copy, modify,

and redistribute his system, he also tied Linux to the whole GNU operating

system framework. Linux was more than just a realization of Richard Stallman’s

GNU OS, however. Components such as the X Windows system developed at

MIT were added early on, as were numerous other components from BSD.

Spawned by the successful application of the collaborative open source

development model as demonstrated in the case of Linux, the mid-1990s saw a

host of new projects develop that would boost Linux’s usability and popularity

even further. Among these we find the K Desktop Environment (KDE), the

Apache web server and many, many others. These projects were started chiefly

by hackers who had found Linux to be an excellent environment in which to do

and promote development for both open and proprietary Unix-like systems.

In the early days of 1991-92 people who wanted to try Linux had to go on the

Internet, find and download all the components that were needed, build the disk

file system by hand, and compile and install the software file by file. Needless to

say, this was a form of distribution that only the most ardent hacker could enjoy.

In 1993, therefore, an early Linux adopter from the comp.os.minix news group,

named Peter MacDonald, decided to put together a Linux distribution that

Chapter 3108

would be easy to install for new users. Characteristically he called his

distribution Softlanding Linux Software (SLS). With SLS, users got an easy to use

installation program that took them step-by-step through the process of installing

Linux on their system. In addition to the basic Linux system that consisted of the

kernel, the shared libraries, and basic utilities, users could also easily install any

number of optional software packages such as the GNU development tools,

Emacs and other editors, networking and mail handling software, the X Window

System, and more. For convenience sake, this and other distributions that

followed could also be bought on CD-ROM for a nominal cost. With fairly easy to

install distributions such as SLS, one of the major thresholds for wider adoption

of Linux had been surmounted. Linux was now suddenly an operating system

also for non-hackers. During the 1990s the Linux distribution business grew by

leaps and bounds. Carried forth by volunteer efforts such as SLS, Slackware, and

Yggdrasil in the first half of the decade, to major commercial Linux distributors

such as Red Hat, S.u.S.E., Caldera, and Mandrake toward the end of the decade,

Linux became the most successful and widely recognized hacker effort ever.

More than an operating system, today Linux is a collaborative patchwork

stitched together by the philosophy of free software and the concept of open

source.

Conclusions

The case study in this chapter was designed to explore the hacker movement’s

successful adaptation and re-engineering of technology in the period between

1970 and 2000. During this time, hackers not only took existing operating systems

technology, refined it and produced their own systems and solutions such as the

BSD, GNU and Linux operating systems, in the process they also invented both a

Free as in Freedom 109

renewed philosophy of code sharing and new collaborative development models

based on the concept of open source. From the earliest efforts to develop time-

sharing operating systems, the desire to create environments in which

programming could take place as a communal activity was an important

motivator. The word time-sharing itself reflects this desire better than anything,

and in short order, small hacker communities based on the sharing of code and

experiences emerged around the early experimental installations at places such

as MIT, Bell Labs, Berkeley, and elsewhere.

The Unix operating system, although developed within the framework of a

traditional research institution was, for all intents and purposes, a hacker

creation. Its simple, yet flexible and totally open structure appealed to hackers’

sense of style and hands-on approach, and during the 1970s and 80s it became

the OS of choice for most serious hackers. Because the AT&T telephone company

in the 1970s was prevented by government order from commercializing Unix, the

hackers at Berkeley were able to play with it, modify and add to it as much as

they wanted. By the time the AT&T monopoly fell in 1984, and the company

began to impose proprietary restrictions on it for commercial gain, the hackers

had already appropriated Unix and made their own version of it: BSD. The cat

was out of the bag, and it could not be put back in even though AT&T in the

early 1980s went to the courts in an attempt do so.

During the 1980s, as computers in general, and the PC in particular, helped

facilitate an accelerated computerization of society, the hackers’ ideals of freedom

and code sharing came under increasing pressure from commercialization efforts

by companies and individuals who saw software as a promising new industry. In

a response to these developments, Richard Stallman, once named “the last of the

true hackers” (Levy 451), founded the Free Software Foundation and embarked

Chapter 3110

upon an ambitious crusade to create a free alternative operating system that

hackers and others could use, share, modify, and distribute freely. GNU, as the

system was called, became an important stepping stone for many hacker

activities and projects in the late 1980s and early 90s, among them one by a

young unknown hacker from Finland named Linus Torvalds.

As a hobby, Torvalds started out trying to create a Unix-like operating system

for his personal computer. Incidentally, he ended up creating the very

locomotive for most of the important hacker activities in the 1990s. A major

reason for Linux’s success was, as I have discussed, the fact that Torvalds was

able to build his system mostly from bits and pieces that other hackers had

already made. Another equally important reason was that Torvalds, quite

unintentionally, was able to harness the collaborative and communicative spirit

of the new Internet and thereby capture the imagination of a new generation of

hackers. The popularization of the hacker movement in the 1990s is the topic for

the next chapter.

4

We Changed the World

The Hacker Movement in the 1990s

When you see URLs on grocery bags, on billboards, on the sides of trucks,

at the end of movie credits just after the studio logos—that was us, we did

that. We put the Internet in the hands of normal people. We kick-started a

new communications medium. We changed the world. –Jamie Zawinski

In 1990 few people outside of the hacker circles had heard of Free Software and

the concept of source sharing. Even fewer thought there would be room for such

“radical” ideas in the rapidly evolving commercial world of software

engineering. By the turn of the century the ideas of Free Software and Open

Source were almost on everyone’s lips, and the hacker movement’s leading

figures and evangelists, such as Richard Stallman, Linus Torvalds, Eric Raymond

and others, had acquired fame and status far outside their home turf. The hackers

were no longer the anti-social misfits that the popular media loved to talk about

every time there was a computer virus on the loose or a data break-in. They were

the new heroes—the creative entrepreneurs of the dotcom era and their ideas,

ethics and methods changed not only the landscape of software engineering but

also ushered in new business models and products that challenged the

Chapter 4112

establishment. In the 1990s the hackers were the ones who realized they had a

shot at changing the world, and they went for it.

In this chapter I will discuss some of the significant developments that

furthered the rise of the hacker movement in the 1990s. The chapter starts with a

presentation of Red Hat Inc, one of the companies that made a successful

business out of Linux and thereby showed the world that one could make money

on “free software.” I then move on to look at the relationship between the Free

Software and Open Source movements and how these came to stimulate the

adoption of hacker development methodologies in the software industry. This

serves as a backdrop for the second part of the chapter where I focus specifically

on two projects, Apache and Mozilla, that helped cement the acceptance of Free

and Open Source software as viable and enduring alternatives to proprietary

models and practices. The chapter concludes with an analysis of three of the most

important online hacker communities of the late 1990s and discusses how these

helped broaden and strengthen the hacker movement in various ways.

In Search of “The Next Big Thing”

The widespread adoption of the Internet and the communication technologies

associated with it contributed in large part to a further globalization of the hacker

movement in the 1990s. In the 1960s and 70s, hackers typically worked in small

groups or as individuals in relative isolation from one another. In the 1980s,

communication technologies such as Email, IRC, Usenet and later the Web, came

to facilitate the formation of new and geographically diverse groups of hackers.

Linux, a main case in the previous chapter, is an example of a technology born in

this new environment. Hackers such as Linus Torvalds, however, were not the

only ones to discover the new possibilities the Internet had to offer. In the years

We Changed the World 113

between 1994 and 1998, a vast number of start-ups and established companies

alike flocked to the Internet hoping to capitalize on what they perceived as the

“next big thing.” While this move was made possible by deregulation and

subsequent decommission of the old ARPANET in 1990, for most it was the

World Wide Web that held the promise of golden business opportunities. One

company that would use the power of the Internet to create a business out of Free

Software was Red Hat Software. I will shortly return with a discussion of this

company and how it fits into the larger picture of the hacker movement in the

90s. First, however, I want to clarify a few points about the Internet and how it

relates to the hacker movement specifically.

Collaboration. The Internet represented a worldwide communication

infrastructure that let people with converging interests connect across

geographical barriers and time zones, across age differences and social status.

The Internet constituted a worldwide arena for collaboration.

Communication. The Internet represented a highly versatile and up-to-date

source of information about new developments and interesting projects. It

provided the perfect avenue for spreading the “gospel of free software.” The Free

Software Foundation was slow to catch on to the significance of the Internet in

this regard. Linus Torvalds, on the other hand, may not have completely

understood the ramifications of using the Net, but according to Eric Raymond,

for him, using it was second nature.

Distribution. The Internet represented an effective medium for distribution of

software. It made it possible to share data and software at no, or minimal, cost

and at the same time reach a worldwide audience.

Chapter 4114

As the Web matured in the 1990s, it quickly came to be seen as a new frontier

for business opportunities. The rise of the dotcom economy in the second half of

the decade became an important catalyst for the growth of the issues I am

discussing. Everyone was falling over themselves to have a presence on the

World Wide Web. Everyone tried to leverage the promise of the web to benefit

their own cause or goal, so why shouldn’t the proponents of the free software

movement do the same?

Red Hat: “Rising on a wave of inevitability”

“Rising on a wave of inevitability”—these were the words that Red Hat’s own

web site used in 2002 to describe the company’s rise to fame in the late 1990s

(Red Hat Linux). While the increasing popularity of, and focus on, Free Software

during this period was by no means “inevitable,” as the corporate lore seems to

believe, Red Hat company managed to tap into what was fast becoming one of

the hottest commodities in the software business and was thus well positioned to

ride the Open Source wave that soon followed.

Robert Young and Marc Ewing founded Red Hat Software in January of 1995.

Young had started out with a small software distribution business in the early

90s and had followed the early developments of Linux with great interest.

Contrary to his expectations, however, the Linux phenomenon proved to be more

than just a fluke, and with its rapidly growing popularity he became more and

more intrigued by what business opportunities they could garner from it. Young

explains:

We found that instead of this bizarre Linux OS effort collapsing, it

continued to improve. The number of users continued to grow and the

We Changed the World 115

applications they were putting it to were growing in sophistication. So we

began to study the OS development more carefully. We spoke to the key

developers and the largest users. The more we studied, the more of a

solid, albeit unusual, economic model we saw. (Young)

As I explained in the previous chapter, the Free Software distribution

business was well underway by the mid 1990s with more than a dozen different

entities offering Linux or BSD solutions for sale on CDs or free downloads via

FTP. However, while most of these developers focused their efforts on the

technical aspects of compiling and building the software distributions, Young

and his partner, Marc Ewing, realized that as the number of people using Free

Software continued to grow there would also be a market for consulting services

and logistics- and end-user support. He explains:

The "unique value proposition" of our business plan was, and continues to

be, to cater to our customers' need to gain control over the operating

system they were using by delivering the technical benefits of freely-

redistributable software (source code and a free license) to technically-

oriented OS consumers. (Young)

Young compares Red Hat’s business model to that of the auto industry. No

car manufacturer makes all the parts that make up their various models; instead,

he says, they buy their parts from a number of different sub contractors. The

automaker’s job is to put all these different parts together and make a car out of

them. In a similar fashion, Red Hat uses a number of different software

components in their retail distributions. At the core there is the Linux kernel with

Chapter 4116

libraries and the GNU development tools. The user interface may be based on

KDE in one release and GNOME in another. Finally there is a suite of application

programs for all sorts of purposes including image manipulation, database

development and office tools. None of these components come from Red Hat’s

own engineers; instead, they are collected from a variety of sources within the

Free Software world. Red Hat’s job is to put them all together in a coherent way

necessary to create a complete and functioning operating system that will satisfy

end users. In later years Red Hat has also started to contribute with software

components of their own, most notably the Red Hat Packet Manager (RPM), a

program designed to make it easy to install/uninstall and upgrade various

components in Red Hat Linux.

Until Red Hat entered the Free Software distribution business in the mid

1990s, the Linux operating system could not be considered readily available to

the general public. It was mostly an online phenomenon and something for the

technical elite who knew where to find it, and who could tweak and work on

their own systems. When the Red Hat Linux distributions started to appear on

the shelves of software retailers, however, something significant had happened.

For the first time, a major Free Software product was being marketed and

distributed alongside commercial offerings. A prospective user could walk into

any number of retail stores and walk out with a copy of Linux neatly wrapped

and packaged and complete with printed manuals and telephone and online

support.

Unlike other Linux distributors at the time, which were either private

individuals or small non-profit organizations, Red Hat was a commercial

company that had just made a business out of selling Free Software. When the

company first started in 1995, this sounded to most industry observers like an

We Changed the World 117

oxymoron, but over the next few years, as more and more companies followed

suit, it became apparent to pundits and media analysts that Free Software was

indeed the Next Big Thing.

When Red Hat Software Inc. went public in 1999, the company raised $84

million in its first day of trading and came in among the top performing IPOs on

Wall Street that year (Glasner “The Biggest IPO”). Another company, VA Linux,

set a new record for the largest first-day gain in IPO history, with a 733 percent

run-up when it went public in December the same year. Analysts at the time

explained these astounding figures by “the general hoopla among investors

about anything remotely tied to the Linux operating system” (Glasner “VA

Linux”). This was at the very eve of the dotcom era, but nevertheless, in eight

short years, the Free Software movement propelled by Linux had gone from an

obscure hacker phenomenon to a multi-million dollar enterprise. The hackers

had become the new stars on Wall Street, and Linus Torvalds himself was the

brightest of them all. To fully understand how this astounding achievement was

possible, it is necessary to step back a few years and look at some other important

developments that took place on the Free Software scene in the interim.

“The Cathedral and the Bazaar”

As word of the new Linux OS spread rapidly throughout the hacker movement

in the early 1990s, it attracted users, testers and contributors in droves. One of

these new Linux converts was Eric Steven Raymond, also known online as ESR.

Raymond had first become involved with the hacker movement in the late 1970s,

and in the mid 1980s he had been one of the earliest contributors to the Free

Software Foundation’s GNU project. Another of his early and important

contributions was as editor and maintainer of what was then called the Jargon

Chapter 4118

File, an online collection of hacker lore, slang and jargon (Raymond, “New

Hacker’s”). When Raymond first discovered Linux in early 1993, he realized that

something new and big was afoot within the hacker movement. Inspired by

Linus Torvalds’ new and creative development model, he thus began a series of

theoretical writings designed, as he says, to “illuminate the social patterns and

development methods that that culture was already using effectively, in a way

that made it possible for other people to understand and emulate them”

(Raymond “Interview”). The most influential of these writings was a paper

entitled “The Cathedral and the Bazaar” (1997).

“The Cathedral and the Bazaar” attempts to describe and understand the

Linux approach to software engineering. In traditional software engineering,

which Raymond likens to the classic cathedral building of the Middle Ages, a

program, he says, is typically crafted by a group of highly skilled craftsmen

presided over by a master builder who provides the vision and the grand plans

for the project. He explains:

Linux overturned much of what I thought I knew. I had been preaching

the Unix gospel of small tools, rapid prototyping and evolutionary

programming for years. But I also believed there was a certain critical

complexity above which a more centralized, a priori approach was

required. I believed that the most important software (operating systems

and really large tools like the Emacs programming editor) needed to be

built like cathedrals, carefully crafted by individual wizards or small

bands of mages working in splendid isolation, with no beta to be released

before its time. (Raymond “Cathedral”)

We Changed the World 119

When he looked at the way in which Linus Torvalds had organized the Linux

project, on the other hand, none of these “truisms” were anywhere to be found.

On the contrary, to Raymond the Linux engineering model looked most of all like

a “great babbling bazaar” in which basically anyone could bring their goods to

market. If the project leaders deemed a particular contribution significant and

valuable enough, it would then make its way into the code and become part of

the bigger mosaic.

Linus Torvalds' style of development—release early and often, delegate

everything you can, be open to the point of promiscuity—came as a

surprise. No quiet, reverent cathedral-building here—rather, the Linux

community seemed to resemble a great babbling bazaar of differing

agendas and approaches (aptly symbolized by the Linux archive sites,

who'd take submissions from anyone) out of which a coherent and stable

system could seemingly emerge only by a succession of miracles. The fact

that this bazaar style seemed to work, and work well, came as a distinct

shock. (Raymond “Cathedral”)

To test his theory and to see for himself how the bazaar model would work in

a practical setting, Raymond set out to create a new Free Software project based

on Torvalds’ Linux model. Raymond had long held the belief that “every good

work of software starts by scratching a developer's personal itch” (Raymond

“Cathedral”), so consequently he chose an email POP3 client that he had wanted

for some time as the test bed for his project. The POP3 client, later named

Fetchmail, would only be a bi-product of the much more important paper that

eventually came out of the project. In this paper, Raymond summarizes some of

Chapter 4120

the lessons from the bazaar experiment with the following key observations:

(Raymond “Cathedral”)

1) Every good work of software starts by scratching a developer's personal

itch.

2) To solve an interesting problem, start by finding a problem that is

interesting to you.

3) Good programmers know what to write. Great ones know what to rewrite

(and reuse).

4) Release early. Release often. And listen to your customers.

5) If you treat your beta-testers as if they're your most valuable resource,

they will respond by becoming your most valuable resource.

6) When you lose interest in a program, your last duty to it is to hand it off to

a competent successor.

“The Cathedral and the Bazaar,” (subtitled “Why does the Linux

development model work?”) was presented publicly at the 4th International

Linux Kongress in Würzburg, Germany in 1997. It was warmly received by the

conference audience and soon made headlines on Linux and Free Software web

sites all across the Internet. Raymond had actually succeeded beyond his

expectations in his theoretical undertaking. He had managed to dissect the Linux

phenomenon and describe its inner workings and benefits in ways that made the

hacker community’s implicit knowledge of its own practices explicit.

Furthermore, he had managed to do this in a way that people outside of the

immediate hacker circles could understand. This last point would soon prove to

be one of the most crucial upshots of the paper.

We Changed the World 121

In Mountain View, California, there was a company with a problem. They

had once presided over the most successful web browser in the world, but in

recent years their hegemony had come under severe attack from their most

ardent competitor. They were looking for ways to remedy the unfortunate

predicament in which they found themselves, and they believed that Eric

Raymond’s bazaar model presented the salvation. That company was Netscape

Communications Corporation (Leonard “Let my”). In January of 1998 in an

unprecedented move that surprised most industry observers, Netscape

announced that it would release the source code to its popular but ailing web

browser to the Free Software community (“Netscape Announces”). The so-called

browser wars that had raged with increasing intensity since Microsoft had first

released its Internet Explorer web browser in 1995 had left Netscape’s market

share trailing far behind at this point. It was believed that by opening up the

source and letting independent programmers in, Netscape could once again gain

the upper hand in the struggle for market dominance. According to their 1998

news release, Netscape hoped that this would enable them to “harness the

creative power of thousands of programmers on the Internet by incorporating

their best enhancements into future versions of Netscape's software” (“Netscape

Announces”). The decision to “free the source” eventually led to the creation of

the Mozilla project. After Linux, this was perhaps the biggest and most

influential Free Software project of the late 1990s and early 2000s.

The Open Source Initiative

In spring of 1998 a new buzzword was beginning to be heard on the Internet

grapevine. The word was Open Source. An article in the online Wired News from

May 1998 opens with the following passage: “If you've sent email or browsed a

Chapter 4122

Web site, you've almost certainly come into indirect contact with "open source"

software without even knowing it” (Glave). The author makes only a fleeting

reference to the term in this article, but before the end of the year the new phrase

Open Source had all but replaced Free Software in the public discourse. To the

uninformed, the distinction between the two may seem semantic at best. In

reality, however, while describing more or less the same technical concepts and

development processes, the two phrases represent two almost entirely different

philosophical views on software development.

When Richard Stallman first coined the term Free Software back in the mid-

1980s, he wanted it to say something about personal freedoms to create, use,

change and redistribute software. To him, it was a moral imperative. “For the

Free Software movement, non-free software is a social problem and free software

is the solution,” says Stallman (“Why ‘Free’”). In the English language, the word

free also commonly refers to something you can get for free, or free of charge. This

double meaning of the word turned out to be somewhat unfortunate, and

Stallman later claimed that it was never his intention that Free Software should

also be gratis. He explains: “ ‘Free software’ is a matter of liberty, not price. To

understand the concept, you should think of ‘free’ as in ‘free speech,’ not as in

‘free beer’” (Stallman “Free Software Definition”).

In the late 1990s, some people, including Eric Raymond, started to feel that

the adoption of Linux and other Free Software programs, especially within the

large and important corporate sector, was hampered by the very label Free

Software that many, especially outside the hacker movement, frequently mistook

for free as in gratis. Raymond elaborates:

We Changed the World 123

I became aware that our largest problem as a culture was not technology

but image. We had created a perception of our work and our goals and

our social organization that was hurting us badly and hindering the

adoption of our technology and getting in the way of our goals. In

particular I realized that the term Free Software was a problem. It was not

a problem because of what it means inside our community, but because of

what it promotes outside. (Raymond “Interview”)

When Raymond first learned of Netscape’s decision to open the source to

their browser software, he realized immediately that a golden opportunity had

just opened up for the hacker movement. In an interview with online magazine

Salon.com shortly after Netscape’s announcement he says:

We knew we had a better way to do things in our software designs and

operating systems and the way that we shared work with each other. But

we couldn't get anybody to listen. Netscape doing this creates a window

of opportunity for us to get our message into corporate boardrooms. The

flip side of that is that if Netscape tanks, no one is going to listen to us for

another decade. (Leonard “Let my”)

There was suddenly a lot at stake, and Raymond wasn’t about to let an

historical chance go by the wayside. In his own words, “it was time to stop being

an accidental revolutionary (a reference to Linus Torvalds’ autobiography) and

start being a purposeful one” (Raymond “Interview”). On February 3rd 1998, he

met with Todd Anderson and Chris Peterson of the Foresight Institute, John

"maddog" Hall and Larry Augustin of Linux International, and Sam Ockman of

Chapter 4124

Silicon Valley Linux User's Group in Palo Alto, California (OSI “History”). At

this meeting the group brainstormed various strategies for how best to sell the

bazaar-style software engineering models to the corporate world, which, they

were convinced, was finally ready to listen now that Netscape had given the all-

important imprimatur.

We realized it was time to dump the confrontational attitude that has been

associated with "free software" in the past and sell the idea strictly on the

same pragmatic, business-case grounds that motivated Netscape. We

brainstormed about tactics and a new label. "Open source," contributed by

Chris Peterson, was the best thing we came up with. (OSI “History”)

Not long after the meeting, Eric Raymond and Bruce Perens co-founded the

Open Source Initiative (OSI), a non-profit organization dedicated to promote the

label Open Source and a new set of licensing guidelines dubbed the Open Source

Definition (OSD). A more thorough analysis of the OSD will follow later, but for

the purposes of the historical context here, however, I shall make just a few

remarks on what it is and how it differs from regular licenses such as the GNU

GPL or the BSD license. Bruce Perens drafted the original document using the

Debian Free Software Guidelines (of which he was also the primary author) as a

template. Thus, the OSD is not a software license per se; rather, it is a set of

guidelines and criteria that an Open Source software license must meet.

The founders of the OSI wanted Open Source to have the broadest possible

appeal, especially within the important commercial world; and thus, as opposed

to the GNU GPL, there is no reference to the troublesome word free anywhere in

the OSD document. More importantly, however, while software licensed under

We Changed the World 125

the GNU GPL is largely incompatible with proprietary solutions, the OSD was

designed specifically to let companies incorporate open source solutions within

their proprietary software and vice versa. In this respect, the OSD takes its cue

from the BSD license in which no restrictions are placed upon proprietary

components. An important stipulation in the OSD is, of course, that programs

licensed under an OSD-type license must include source code, or, the source code

must be readily available upon request. Also, any work under the OSD

guidelines must allow for modification and derivative works as well as

redistribution of those works. By the year 2002, more than 40 different types of

software licenses were said to conform to the guidelines set out by the OSD.

These included licenses from several major corporate actors in the software

business such as Apple Computer, Corel, IBM, AOL/Time Warner, Troll Tech,

Sun Microsystems, Nokia, and Sybase (OSI). The vast majority of Free Software

and Open Source projects, however, continued to use variations of the GNU GPL

or the BSD license.

A Conflict of Interests: Ideology vs. Pragmatism

Not long after the formation of the Open Source Initiative, a conflict that had

been latent within the hacker movement for the better part of the 90s suddenly

came to a head. On one side of the divergence were the proponents of Richard

Stallman and his ideology of Free Software as expressed through the GNU GPL

and other writings published by the Free Software Foundation. On the other side

were the proponents of the less restrictive, more pragmatic BSD-style licensing

scheme, which the new Open Source Initiative sought to embrace. The conflict

was complex and had several different layers to it as Eric Raymond explains

from his point of view:

Chapter 4126

There is an ideological level, there is a practical level, and there is a

personal level. On the ideological level, what you are seeing here is a

conflict between two ideologies, two value systems that lead to similar

behaviors but justify and advocate those behaviors in fundamentally

different ways. The difference in ideology is fairly clear. Richard’s mode of

changing the world is very consciously and explicitly a moral crusade. If

you don’t buy his abstract moral arguments, you don’t sign up. The way

that Linus Torvalds and I, and others, have pushed is a pragmatist’s way.

In effect what we’re saying is; “Moral argument? Who needs a moral

argument? We like engineering results!” So there is a level at which it is a

conflict about what kind of ideology we are going to have.

There is a practical level on which it is a conflict about which kinds of

tactics work for spreading our message. The argument on that level is;

Does it work better to moralize or talk about results?

There is also a personal level in that, well, people have egos and they have

investments in their ideologies, and if part of what’s going on is that you

think somebody hijacked your revolution, you kind of resent that.

(Raymond “Interview”)

Stallman’s radical political agenda, coupled with his well-known

unwillingness to compromise on the premise of Free Software, meant that there

was, in effect, no room for him in the new Open Source movement. In their

attempts to sell their ideas to the business world, therefore, the Open Source

We Changed the World 127

Bruce Perens. Self-taught Unix hacker, author of the Open Source Definition, and co-

founder of the Open Source Initiative. Photo courtesy of Gary Wagner. © 2001

garywagnerphotos.com

advocates purposefully distanced themselves from Stallman and Free Software.

The last thing they wanted was to alienate potential partners in business and

industry by what they saw as Richard Stallman’s “infamous” confrontational

attitude. Stallman on his side did little to ease the tension. To the contrary, in

response he boldly turned up the rhetoric a few more notches by accusing the

Open Source proponents of “neglecting political issues, and jumping on the

bandwagon of the day,” which, he believed to be, “a common form of

shallowness in our society” (Leonard “Stallman saga”). To further drive his

Chapter 4128

argument home, Stallman later published a paper in which he outlined what he

believed to be the fundamental differences between Free Software and Open

Source. One of the opening passages of his paper reads as follows:

The fundamental difference between the two movements is in their values,

their ways of looking at the world. For the Open Source movement, the

issue of whether software should be open source is a practical question,

not an ethical one. As one person put it, ``Open source is a development

methodology; free software is a social movement.'' For the Open Source

movement, non-free software is a suboptimal solution. For the Free

Software movement, non-free software is a social problem and free

software is the solution. (Stallman “Why ‘Free’”)

In another position statement entitled “Freedom or Power?” Stallman

elaborates further upon the notion of Freedom. He says:

In the Free Software Movement, we stand for freedom for the users of

software. We formulated our views by looking at what freedoms are

necessary for a good way of life, and permit useful programs to foster a

community of goodwill, cooperation, and collaboration. […]

We stand for freedom for programmers as well as for other users. […]

However, one so-called freedom that we do not advocate is the "freedom

to choose any license you want for software you write." We reject this

because it is really a form of power, not a freedom. […] If we confuse

We Changed the World 129

power with freedom, we will fail to uphold real freedom. (Stallman and

Kuhn “Freedom”)

Although the conflict between the ideologists and the pragmatists within the

hacker movement eventually quieted down, it had for all practical purposes

created two separate wings, a left and a right as it were, within the broader

movement. Many, even within the Open Source Initiative, thought this schism

was an unfortunate turn of events. Bruce Perens, for instance, had originally

envisioned the Open Source Initiative as a gentle introduction to the deeper

philosophy of Free Software, rather than a separate movement; and for this

reason he soon came at odds with Eric’s Raymond’s separatist hard-line. In an

interview with Linux Magazine in September, 2001, Perens says:

When we founded Open Source, my understanding was that Open Source

would be a gentle introduction to Free Software and not a separate

movement. I would never have participated in Open Source for the

purpose of creating a schism. Especially now, it is important that we stand

together. That's more important than it used to be. I harbor some

disappointment that Open Source became something that sort of

deprecated Richard Stallman's philosophy rather than leading people into

Free Software. (McMillan “Our Man”)

The two wings eventually resumed collaboration on practical projects of

common interest, but their individual agendas, strategies, and goals would

remain different. Unity was not the only casualty from the fallout between Open

Source and Free Software. On February 18th, 1999, Bruce Perens resigned from the

Chapter 4130

Open Source Initiative. In an email distributed on the Net he said: “It's Time to

Talk about Free Software Again” (Perens “It’s time”).

The Halloween Documents: The Empire Strikes Back?

By the end of the 1990s, the Linux operating system had grown into a

considerably popular server platform and had also started to make inroads into

the lucrative desktop market. For many new users Linux represented a form of

liberation from the firm monopolistic grasp that Microsoft had established in the

personal computing market. Some observers even came to believe that the

astonishing Linux adoption rate was more than anything indicative of a giant

backlash against the omnipresent Microsoft. Ken Thompson, creator of Unix, for

instance, had this to say about Linux in 1999:

I view Linux as something that's not Microsoft—a backlash against

Microsoft, no more and no less. I don't think it will be very successful in

the long run. I've looked at the source and there are pieces that are good

and pieces that are not. A whole bunch of random people have

contributed to this source, and the quality varies drastically. (Cooke et al

“Unix and Beyond”)

With Netscape opening the source code to their browser and the new Open

Source movement rapidly gaining favorability and coverage in the press, the

silence and apparent inactivity on the part of Microsoft grew ever more ominous.

Then, shortly before Halloween of 1998 a confidential Microsoft memorandum

on Linux and Open Source was “leaked” to Eric Raymond. He immediately

realized that this was pure gold for the Open Source movement and, being an

We Changed the World 131

eminent writer and strategist with a flair for the dramatic, he spent the

Halloween weekend annotating the Microsoft document with his own comments

and analysis, whereupon he promptly released it to the national press as the

“Microsoft Halloween Document.” The press ran with the story, and a few days

later Raymond received a second Microsoft memorandum from an undisclosed

source, this one focusing specifically on Linux (Raymond “Halloween

Documents”). The gist of the original Halloween document can be summarized

in the following key points.

1) OSS poses a direct, short-term revenue and platform threat to Microsoft,

particularly in server space. Additionally, the intrinsic parallelism and free

idea exchange in OSS has benefits that are not replicable with our current

licensing model and therefore present a long term developer mindshare

threat.

2) To understand how to compete against OSS, we must target a process

rather than a company.

3) OSS is long-term credible ... FUD tactics cannot be used to combat it.

4) Linux can win as long as services / protocols are commodities.

5) OSS projects have been able to gain a foothold in many server applications

because of the wide utility of highly commoditized, simple protocols. By

extending these protocols and developing new protocols, we can deny

OSS projects entry into the market. (Raymond Halloween I”)

Chapter 4132

As opposed to what the official Microsoft position was at the time, the

document clearly shows that the company viewed Open Source software (OSS)

as a threat to their short and long term market dominance. They also seemed to

understand that they were not up against a traditional company or business this

time, but rather, what they somewhat erroneously refer to as a process. The

opponent was, of course, the entire hacker movement. The thing that perhaps

scared people the most about the first Halloween document, however, was

Microsoft’s proposed strategies for combating OSS in the market place.

Spreading FUD (Fear, Uncertainty and Doubt) about competing products and the

“de-commoditization of protocols” through embrace and extend tactics were

practices that many had accused Microsoft of in the past. The company had

never officially admitted to such practices, however, but the Halloween

document clearly spoke a different, more sinister truth.

In the spirit of the Halloween holiday, the Microsoft documents served

Raymond’s agenda perfectly. “The new David that the Goliath of Redmond has

in its sights is the free Linux operating system and the ‘open source’ software

development community that built it,” writes Scott Rosenberg in Salon.com on

November 4th. “War hasn't been formally declared yet but the battle plans are

now a matter of public record” (Rosenberg “Let’s Get”).

The so-called Halloween documents had first been circulated internally at

Microsoft in August of 1998. After they became public knowledge, the company

admitted to their authenticity, but brushed aside any speculations as to their

purpose, claiming that they were simply whitepapers meant to “stimulate

internal discussion on the open source model and the operating system

industry.” In no way did they represent “an official Microsoft position or road

We Changed the World 133

map,” said Microsoft group marketing manager, Ed Muth, in an official rebuttal

posted on Microsoft’s web site (Microsoft “Linux”). “Company executives

dismissed open-source as hype,” he said, and added: “Complex future projects

[will] require big teams and big capital. These are things that Robin Hood and his

merry band in Sherwood Forest aren't well attuned to do” (Raymond

“Halloween IV”).

Regardless of what the Halloween documents may or may not have said

about Microsoft’s intentions, or whether Mr. Muth realized that his patronizing

remarks inadvertently cast Microsoft’s executives in the infamous role as the

Sheriff of Nottingham, Eric Raymond, in a brilliant strategic maneuver, had

managed to create a story that in the public mind situated the Open Source

movement as the antithesis to the Redmond software giant.

Apache: A Patchy Server for the World Wide Web

While the GNU/Linux OS, and all the various projects associated with it, was

undoubtedly the locomotive of the hacker movement in the 1990s, there were

many other independent projects that also sought to leverage the promise of

Open Source. In what follows I will examine two projects that for various reasons

and in various forms represent important milestones in the recent history of

Open Source software development. These are the Apache web server and the

Mozilla web browser. The analysis of these two projects is designed to uncover

more details concerning the organization and inner workings of successful Open

Source projects, as well as show some of the diversity that characterized Open

Source development in the late 1990s and early 2000s.

In the early to mid 1990s, the most popular web server software on the

Internet was the NCSA HTTPd (HTTP daemon), a freeware program developed

Chapter 4134

by Rob McCool, an undergraduate student, system administrator, and

programmer at the National Center for Supercomputing Applications (NCSA).

According to McCool, the HTTPd program was based on the original CERN

Hypertext Transport Protocol which, “at that time was around version 0.9 or 1.0,

and was very simple. I found that it wasn't the protocol itself that was

interesting, but rather all the things that could be built around it” (McCool et al

“Apache Story”). Thus, he began a series of modifications and extensions to the

WWW server software that brought along a number of important innovations

such as the URL (Uniform Resource Locator), server parsed HTML, and CGI

(Common Gateway Interface). When McCool later joined Netscape in 1994,

development of the HTTPd program stalled, and many web masters and server

administrators began to implement their own bug fixes, patches, and extensions.

In February of 1995, some of these web masters met over email to discuss

ways in which they could coordinate their independent efforts. Roy T. Fielding,

one of the original members of this group and co-founder of the Apache project

explains:

A small group of these webmasters gathered together via private e-mail

for the purpose of coordinating their changes (in the form of "patches").

Brian Behlendorf volunteered the use of his server as a shared information

space, hosting a public mailing list for communication and providing

logins for the developers, including Robert S. Thau, Rob Hartill, Randy

Terbush, David Robinson, Cliff Skolnick, Andrew Wilson, and myself.

(McCool et al “Apache Story”)

We Changed the World 135

Market Share for Top Web Servers Across All Domains August 1995 - October 2002.

Source: Netcraft Web Server Survey.

Developer Servers Oct 2002 Market share
Apache 21,258,824 60.54%
Microsoft 10,144,453 28.89%
Zeus 711,998 2.03%
iPlanet 478,413 1.36%

The group eventually put together and released “a patchy server” based on

McCool’s HTTPd code, and thus, the “Apache” project was officially under way.

Less than a year after its first release, Apache had become the most popular web

server on the Internet.

Data from the Netcraft Web Server Survey (Netcraft) shows that by October

of 2002 the Open Source Apache server had amassed a whopping 60% share of

the total market for web servers. The commercial offering from Microsoft came in

a distant second with just about 29% of the market share. These astounding

figures, along with its long-term survival in the marketplace, have made the

Apache project a poster child of the hacker movement. To understand how such

an accomplishment was possible, we need to appreciate not only the

characteristics of the market place, but also the Apache project’s organization and

development practices.

Chapter 4136

To start with the market place, it is clear that Apache got off to a flying start

by essentially filling the void left behind by the orphaned NCSA HTTPd. In those

early years, Netscape’s Enterprise Web servers enjoyed a considerable share of

the market, but as Netscape’s influence sharply declined toward the end of the

90s, their servers all but disappeared from the marketplace. Microsoft, on the

other hand, with their lineup of web, Intra- and Internet server solutions has,

according to the Netcraft Survey, seen a steady, albeit slow growth in their

market share. When looking at these numbers, it is helpful to keep in mind that

the Internet in the 1990s was, to a large extent, built on Unix servers. Apache,

which targeted these directly, was therefore at a considerable advantage

compared to Microsoft who mainly targeted their own server platforms.

According to a 1998 survey by market researcher Dataquest, Unix servers held

42.7 percent of the server market that year. By contrast, Microsoft NT’s share of

the market was only 16.2 percent (Patrizio).

While the Linux kernel project, as I have explained earlier, was organized in a

vertical, hierarchical fashion with Linus Torvalds as its benevolent dictator, the

Apache model was much more horizontal and decentralized. The core

developers were all volunteers from several different countries, including the

United States, the UK, Canada, Germany and Italy; and in order for the

development efforts to succeed, the organizational decision making process had

to be flexible enough to accommodate everyone’s time zone and personal

schedule. In a 1999 paper published in Communications of the ACM, Roy Fielding

explains how the early decision making process worked:

There was no Apache CEO, president or manager to turn to for making

decisions. Instead, we needed to determine group consensus, without

We Changed the World 137

using synchronous communication, and in a way that would interfere as

little as possible with the project progress. What we devised was a system

of voting via email that was based on minimal quorum consensus. Each

independent developer could vote on any issue facing the project by

sending mail to the mailing list with a “+1” (yes) or “-1” (no) vote. For

code changes, three positive votes and no negative votes (vetoes) were

required before the change would be allowed in the final source. For other

decisions, a minimum of three “+1” and an overall positive majority was

required. Anyone on the mailing list could vote, thus expressing their

opinion on what the group should do, but only those votes cast by the

Apache Group members were considered binding. (Fielding)

From 1996 onward the group used CVS (Concurrent Versions System) for

managing the shared code base. CVS is a version control system that allows

developers in different locations to work on a shared code base. In a CVS system

the code is organized in a central repository that keeps track of any changes

(history) made to it. Independent developers can “check out” modules or files

from the central CVS repository as well as “commit” changes to it if they are so

authorized (Cederqvist). CVS allowed the Apache group to streamline their

development efforts by enhancing the collaborative environment and giving each

individual developer better access to the shared code. The project was organized

as a “meritocracy,” which meant that the more good code a person contributed,

the more access privileges and responsibility they would receive (Fielding).

While Apache by any account was already highly successful, the project

received a further boost when in 1998 IBM announced that the company would

formally adopt Apache as their web server platform and, furthermore, come on

Chapter 4138

board as a contributor. In the beginning, members of the group were skeptical of

IBM’s motives and what it could mean for the project as a whole. Apache co-

founder Brian Behlendorf explains:

Most developers had some sort of financial motivation to be involved, yet

overall the main driver at that point was that working on and being

involved with Apache was "fun." Could it still be "fun" with an 800-pound

gorilla involved? Could we reconcile the fact that up to this point, it had

been a group of individuals working together, yet this was a company

asking to join us? Would this mean we'd become essentially unpaid

developers for someone else? (McCool et al)

After many rounds of discussions within the group, it was decided to allow

IBM in. The decision would prove advantageous for the Apache team on many

different levels, and according to Behlendorf, “IBM set the gold standard for how

to work as a peer within an Open Source development project” (McCool et al). It

is ironic, perhaps, that IBM of all companies would align themselves in this way

with the hacker movement. Had it been only five or ten years earlier, such a

marriage would have been unthinkable.

Mozilla: A Revolutionary Project for Revolutionary Times

We sat in the conference room and hooked up the big TV to one of the

Indys, so that we could sit around in the dark and watch the FTP

download logs scroll by. jg [sic] hacked up an impromptu script that

played the sound of a cannon shot each time a download successfully

completed. We sat in the dark and cheered, listening to the explosions.

We Changed the World 139

Four hours later, the Wall Street Journal was delivered, and it already

contained an article describing what we had just done. ``Clients aren't

where the money is anyway,'' ran the quote from Marc.

I'd go home now if I thought I could drive there without dying, so instead

I'm going to curl up under my desk again and sleep here. Maybe we're not

doomed; people on the net are talking about Mozilla with all caps and lots

of exclamation points. They're actually excited about it....(Zawinski

“Netscape Dorm”)

The above except is from the diary of Jamie Zawinski, Netscape employee

#20. The entry is dated October 12th 1994; and it was the day the company

released the 0.9 version of its first browser dubbed Mozilla. Fast-forward eight

years to June 5th 2002, another Mozilla hits the World Wide Web (“Mozilla 1.0”).

What had transpired in the interim was nothing less than the rise and fall of

Netscape Communications Corporation, perhaps the most highly profiled

dotcom of the decade.

By the time Netscape announced (January of 1998) that they would release the

source code to their Communicator suite, much had changed since the euphoric

days of 1994 when, akin to a modern-day King Midas, everything the company

touched seemed to turn gold. Jamie Zawinski explains:

In January 1998, Netscape hit one of its blackest periods -- the first round

of layoffs. It was quite a wake-up call. Netscape, darling of the computer

industry, the fastest-growing company in the world, was not invincible.

Chapter 4140

More concretely, this was when we realized that we had finally lost the so

called ``browser war.'' Microsoft had succeeded in destroying that market.

It was no longer possible for anyone to sell web browsers for money. Our

first product, our flagship product, was heading quickly toward

irrelevance. (Zawinski “Nomo zilla”)

As revealed in the U.S. vs. Microsoft anti-trust proceedings in 1998

(“Testimony”), Netscape had certainly met with some questionable business

tactics from latecomer Microsoft; but contrary to the official corporate spiel, their

problems were as much their own doing as they were Microsoft’s. Now that we

have a historical perspective on the events, we can see that after its initial

successes in the mid 1990s, Netscape, as a company, essentially stopped

innovating. The quality of their software became a liability, and spokespersons

for the company admitted in 1997 that “[t]he company's priorities used to be (in

descending order) features, schedule, and quality” (Lash). When faced with an

aggressive competitor like Microsoft, who was not only able to leverage the full

benefits of a close integration between their Internet Explorer browser and the

Windows operating system, but also was able to produce a higher quality

product, it was only a matter of time before Netscape was out of the so-called

“browser wars” altogether.

It is in light of these events that we must understand Netscape’s decision to

go Open Source. On March 31st 1998, the day that the source code to the

Communicator 5.0 suite was posted on the Internet, Marc Andreessen, Netscape

executive vice president of products said in a news release: “Releasing the

Communicator source code rallies the developer community while leveraging

the incredible talent of the net. Everyone wins” (“Netscape Accelerates”).

We Changed the World 141

To facilitate and coordinate the Open Source effort, Netscape set up an

organization named Mozilla.org. Although several people were involved in the

establishment of the organization and the project it incorporated, Frank Hecker,

one of the architects behind Netscape’s move to go Open Source, credits two

people in particular for getting the Mozilla project off the ground. He says:

A number of people at Netscape were instrumental in setting the Mozilla

project on the right path when it initially started back in 1998. I want to

mention especially Jamie Zawinski and Mitchell Baker.

Jamie Zawinski did a great job of establishing an independent identity for

the Mozilla project at its outset; he lobbied for creation of the mozilla.org

web site independent of Netscape's site, lobbied for creation of mozilla.org

as a separate group dedicated to making the Mozilla project successful,

and commissioned and directed the creation of the Mozilla logo and

"brand image." Most important, Jamie articulated a clear vision for the

Mozilla project and for mozilla.org.

Mitchell Baker and others were originally responsible for Netscape's

efforts to create an open source license for the Mozilla code; this

eventually resulted in the creation of the Netscape Public License and then

the Mozilla Public License. (Suárez-Potts)

Chapter 4142

Mozilla pioneers: Mozilla evangelist Jamie Zawinski (left) and “Chief Lizard Wrangler”

Mitchell Baker.

The Mozilla mission statement, originally authored by Jamie Zawinski, gives

us a good idea of both the original vision and goals for the project, as well as

pointers to its organizational structure.

1) We will provide technical and architectural direction for the project.

2) We will collect changes, help authors synchronize their work, and

periodically make new source releases which incorporate the best work of

the net as a whole.

3) We will operate discussion forums (mailing lists, newsgroups, or

whatever seems most appropriate).

4) We will coordinate bug lists, keep track of and publicize works in

progress, and generally attempt to provide ``roadmaps'' to the code, and

to projects based on the code.

We Changed the World 143

5) And we will, above all, be flexible and responsive. We realize that if we

are not perceived as providing a useful service, we will become irrelevant,

and someone else will take our place.

6) We are not the primary coders. Most of the code that goes into the

distribution will be written elsewhere, both within the Netscape Client

Engineering group, and, increasingly, out there on the net, at other

companies and other development organizations. (Mozilla “Our Mission”)

As one can well imagine, the expectations for the Mozilla project were sky-

high across the board, not only within the project itself, at Netscape, but also

within the Open Source movement in general and in the media. Eric Raymond’s

fear that “if Netscape tanks, no one is going to listen to us for another

decade”(Leonard “Let my”) was not lost on anyone. Mozilla had to produce

results, and it had to produce them fast.

After the project had been underway for some time, however, it became

apparent that the old Netscape code base, much of which dated back to the

original browser from 1994, was in fact causing a number of significant problems.

It had become big and bloated over the years and was thus difficult to maintain

and hard for outside developers to get a handle on. In late 1998, it was therefore

decided to throw out the old code and start over from scratch using a new layout

engine named Gecko. The Gecko engine was designed from the ground up to

support “open Internet standards such as HTML 4.0, CSS 1 and 2, the W3C

Document Object Model, XML 1.0, RDF, and JavaScript” (Mozilla “nglayout”).

This was an important design decision that promoted quality, modularity, and

Chapter 4144

standards compliance, but it came at the expense of the project’s ability to deliver

a new and improved browser as quickly as most people wanted.

The one-year anniversary of the Mozilla project came and went, and there

was no new browser. Outside developers had not flocked to the project as many

had hoped. The outlook was pretty bleak, and it didn’t become any better when,

on April 1st 1999, Jamie Zawinski (in what surely seemed like a bad April fool’s

joke) suddenly announced that he was quitting the project. In a note posted on

his web site he wrote:

My biggest fear, and part of the reason I stuck it out as long as I have, is

that people will look at the failures of mozilla.org as emblematic of open

source in general. Let me assure you that whatever problems the Mozilla

project is having are not because open source doesn't work. Open source

does work, but it is most definitely not a panacea. If there's a cautionary

tale here, it is that you can't take a dying project, sprinkle it with the magic

pixie dust of ``open source,'' and have everything magically work out.

Software is hard. The issues aren't that simple. (Zawinski “Nomo zilla”)

Netscape’s bold and unorthodox move to go Open Source had ultimately

failed to save the company. On March 17th 1999, America Online (AOL)

announced that it had acquired Netscape Communications Corporation

(Netscape “America Online”). The company that had set out to “change the

world” was history, but it had left behind a legacy.

We Changed the World 145

Mozilla.org: A revolutionary project for revolutionary times.

Despite Netscape’s demise, the hackers of the Mozilla project continued to

work diligently on the open source browser over the next few years. Between

March of 1999 and October of 2000, a total of 18 so-called milestone releases were

distributed over the Internet. With each new version, the browser got better and

better, and people slowly started believing in Mozilla again (Mozilla “Releases”).

The number of outside contributors climbed, and so did the number of users.

Then, on June 5th 2002, a day that many had thought would never come, the

Mozilla project released Mozilla version 1.0. Salon.com called it “Mozilla’s

Chapter 4146

Revenge” (Leonard), others were simply glad that there was once again a viable

alternative to Microsoft on the World Wide Web.

Slashdot.org: The Hackers’ Lounge on the Web

The perhaps most prominent of the web-based hacker communities of the late

90s was Slashdot.org (affectionately known as /.). Rob Malda created the site in

September 1997 while he was a student at Hope College in Holland, Michigan.

The first few years Malda ran Slashdot out of his own bedroom; but, as he says,

“from meager beginnings it grew to be quite a popular net destination” (Malda).

Rob Malda, also known as “Cmdr Taco,” is in many ways the quintessential

icon for the new breed of hackers of the 1990s. He grew up in a small town where

computers and the Internet came to represent his window on the world. He says:

From the days of TRS-80s and BASIC with line numbers, on out to C, C++,

SQL, Pascal, Ada, and pretty much any other language that you might

want to mess with. I've done it. From playing with hard drives and dip

switches and cutting yourself on the inside of cases, I've done that too.

From DOS, to Windows, to NT, to OS/2 and finally to Linux, I've been

there, done that. Computers pretty much consume every waking moment

of my life. They're my job, my hobby, and my passion. They provide my

artistic outlet, a stream of revenue, and a way to communicate with those I

care about. (Malda)

Slashdot was not an ordinary web site. It was designed to be both a news

source and a discussion forum. To this end, Malda wrote Slash, a collection of

We Changed the World 147

Perl scripts that interfaces an Apache web server front-end and a MySQL

database back-end in a way that facilitates rapid generation of dynamic content.

Slashdot is run by a group of “editors” who collect stories and tidbits from the

Slashdot readership and post them on the site. On any given day, the headlines

could run something like IBM Working on Brain-Rivaling Computer, Your Rights

Online: DMCA bad for Apple Users, Email (As We Know It) Doomed? , or BSD:

FreeBSD 5.0 Developer Preview #2 (Slashdot, November 19, 2002). When the

Slashdot community moves, web masters everywhere tremble in fear and sites

that have their URLs posted in Slashdot stories frequently experience what is

called the slashdot effect caused by the thousands of surfers trying to follow the

same link simultaneously. Lag, severe server loads, and even system crashes

often result. Websites that have experienced this are said to have been

“slashdotted,” or as most Slashdotters prefer to say it, “/.ed.”

Readers of Slashdot can make comments on the stories that are posted, and

typically there will be long discussion threads where anyone from the

“Anonymous Coward” to the most highly profiled member can make their

arguments heard. Members who consistently make good and insightful posts

accumulate what is called “good Karma.” Once a member’s Karma reaches a

certain level, he or she gets to be a moderator for a certain period of time.

Moderators are the ones who determine which posts gets the most exposure and

for this reason, Karma is a coveted commodity among slashdotters. In 1999 VA-

Linux (Now VA-Software Corporation) attempted to buy Slashdot, but Rob

Malda, for fear of losing editorial freedom, rejected their offer. When the

company came back with a new offer in 2000, a deal was made. Malda,

apparently, was no longer worried about their intentions. “VA has done a lot of

good for the community,” he told a reporter for Salon.com, “they won't jeopardize

Chapter 4148

that by screwing with Slashdot -- they have a lot to lose" (Leonard “The Shape”).

Whereas Slashdot has captured the communicative power of the hacker

community, other manifestations of this power emerged, perhaps most notably

in the form of spaces in which to ‘forge’ source itself.

SourceForge.net: The World’s Premier Hacker Workshop

With its 51,000 Open Source projects and more than 515,000 developers,

SourceForge.net is the world’s premier Open Source workshop (SourceForge,

November 19, 2002). The site, created by VA Software and launched in January of

2000, was designed to “enrich the Open Source community by providing a

centralized place for Open Source developers to control and manage Open

Source software development” (SourceForge “About”). SourceForge is also a

formidable recruiting agency for the Open Source movement in that it also serves

as a place where people who are interested in becoming involved in Open Source

development can find projects that interest them.

Most independent Open Source programmers typically do not have access to

the logistics and infrastructure that commercial software companies do.

SourceForge, therefore, helps level the playing field by offering important

support such as CVS repositories, home pages, mailing lists and newsletters, bug

report and tracking systems, compile farms where developers can test their

software on different platforms, and much more. In essence, SourceForge acts as

a clearinghouse for ideas and innovation on a scale that has hardly been seen in

the software business before. In addition to Slashdot’s forum for communication

and SourceForge’s clearinghouse of productivity, the other key factor in open

source development on the web centers on distribution, on download sites such

as Freshmeat.net.

We Changed the World 149

Freshmeat.net: The Hacker’s Supermarket

The perhaps most popular distribution site for Free- and Open Source software at

the turn of the century was Freshmeat.net. Like Slashdot and SourceForge,

Freshmeat.net was operated under the umbrella of the Open Source

Development Network (OSDN), a wholly owned subsidiary of VA Software

Corporation. At the time of this writing (2003), the site maintains an index of over

20 different software categories comprising more than 35,000 software titles

(Freshmeat “Welcome”).

The main thing that differentiates Freshmeat from other software download

sites on the web is that most of the software is licensed under the GNU GPL (71%

of all projects) or other OSD-compliant licenses, which means that users have full

access to the source code of the programs they download. The site is not just a

Mecca for download-happy hackers, however; they also maintain an archive of

articles and editorials pertaining to Free- and Open Source software

development, an email newsletter with information on the latest and greatest

releases, as well an IRC channel for chat and informal communication.

Worldwide Hacker Communities

When Steven Levy wrote about the hackers of the 1960s and 70s, he was talking

about local hacker groups who really didn’t have much contact with one another

or a common sense of community. The Internet changed all that. Communication

technologies such as Email, Usenet, IRC, and the World Wide Web brought

hackers together in communities that spanned the globe and fostered a self-

Chapter 4150

conscious movement that made significant and lasting impacts upon technology,

society, culture, and economy.

In the 1980s and early 90s these communities were typically found on

electronic bulletin boards (BBS), in Usenet news groups such as comp.os.minix and

comp.os.linux, on email discussion lists, or in online chat environments such as

IRC. With the advent of the World Wide Web and the increasing amount of spam

that eventually befell Usenet, however, from about 1995 onwards the serious

hacker communities gradually shifted to the web. Slashdot.org, SourceForge.net

and Freshmeat.net are all important arenas where hackers congregate today.

Each represents different but important community functions. Slashdot.org is

like a giant lounge where hackers and others who are interested in what goes on

in the hacker movement gather to get news and exchange opinions.

SourceForge.net is the workshop where hackers get together for collaborative

projects, learn from each other, and practice what they all love to do.

Freshmeat.net is the hacker’s supermarket, and along its virtual aisles there is

something for everyone.

Each Open Source project is a community in itself. Apache and Mozilla,

discussed earlier in this chapter, can be viewed as technical communities created

for specific purposes. They consist of a core group of developers with a wide

circle of users around them. These communities work toward the specific goal of

creating technologies. Slashdot.org, SourceForge.net, Freshmeat.net and a

number of other similar communities serve a different but equally important

purpose. They constitute the social and cultural sphere that encircles all the

technical communities and help give the hacker movement as a whole a common

understanding of itself and its mission.

We Changed the World 151

Conclusions

During the 1990s, the hacker movement has evolved from what many would

consider an obscure underground phenomenon into something of a mainstream

mass movement. The main driving force behind this astonishing evolution was

primarily the success of the Linux operating system and the new Bazaar-style

development model that followed in its wake. One could put forward a very

convincing argument that most of the early projects and developments in the

1990s owed their life to the “collaborative climate” created by the Free Software

movement. Richard Stallman’s tireless efforts to spread the gospel of Free

Software, the GNU General Purpose License, and the free software programs of

the Free Software Foundation are all important preconditions for the

developments that followed. The split that occurred when the Open Source

Initiative entered the stage in the late 90s was perhaps unavoidable, and in the

grand scheme of things, something that ultimately, I believe, strengthened the

movement as a whole. While the Free Software wing headed by Richard Stallman

continued to be a social movement with a carefully thought out philosophy on

software development, the new Open Source wing was for the first time able to

rally the support of the corporate world. Many important players such as Apple

Computer, IBM, and Sun Microsystems adopted open source methodologies as

part of their product development strategies, and although many were yet to be

convinced, at the turn of the century proponents of both Free Software and Open

Source had every reason to be bullish about the future.

Chapter 4152

5

From Code to Community

MUD and the Case of LambdaMOO

You open the closet door and leave the darkness for the living room,

closing the door behind you so as not to wake the sleeping people inside

—LambdaMOO Exit Message

Every once in a while, new and uniquely different technologies emerge. The

hacker movement has produced many such technologies over the years, and the

case study in this chapter focuses on one: the Multi-User Dungeon, or MUD for

short. It is not meant to be an exhaustive inquiry into the history of MUDs.

Rather, my aim is to explore and highlight the dynamics of user-driven

technological development as seen in the case of MUD. MUD is a good example

of a hacker technology through and through. It was developed exclusively by its

users and for no other reasons than that it posed fun and interesting challenges.

Although commercial motives played a role in the early MUD development,

almost all the significant developments since have happened through extensive

code sharing in the MUD hacker community.

I have chosen to follow one particular branch of the MUD evolution. This

branch is a system known as MOO (Multi-User Dungeon, Object-oriented). The

Chapter 5154

chapter opens with an account of the early days of MUD and goes on to follow

the specific branch of MUD technology that produced the MOO system. The

main part of the chapter discusses MOO developments at a specific site named

LambdaMOO. One of the most interesting aspects of the LambdaMOO

development is that it took place inside the social and cultural setting of a MUD

community. Because of this, the story of LambdaMOO serves not only to show

the technological evolution of a unique hacker technology, but also shows how

technological solutions were forged in a collaborative effort to meet the social

and cultural challenges of the community in which it was situated.

A Short History of MUD

The history of MUDs began in 1978 with Richard Allan Bartle and Rob

Trubshaw, then undergraduate students at Essex University in the United

Kingdom. Like many of their fellow college students at the time, they were both

thoroughly fascinated by role-playing games such as the highly popular

Dungeons and Dragons (D&D). In these role-playing games players assume the

roles of fantastic mythical characters such as elves, dwarves, paladins, and

sorcerers and enter into a Tolkienesque world of adventure and fantasy.

Dungeons and Dragons, or D&D for short, was a traditional manual game where

players sat down face to face with detailed rulebooks, pen and paper, and several

fanciful many-sided dice. One of the main attractions of the game was the social

experience of the gaming situation. To successfully solve an adventure, the

players had to work together as a team and this created a collaborative

atmosphere that was quite different from the typical competitive nature of most

other games. Another important reason for its success was its almost infinite

replayability, thanks to a rapidly growing number of commercial add-on stories.

From Code to Community 155

In addition, especially creative players could also write their own adventures and

invite their friends to play using the D&D rules.

Bartle and Trubshaw had also seen the popular computer-based adventure

game, “Adventure.” This game is generally considered the first of its kind, and it

was created by William Crowther in 1972. In addition to being a computer

programmer, Crowther was also an avid cave surveyor, and when he decided to

write a computer-based adventure game for his children, setting it in a world of

caverns and dungeons was perhaps an obvious choice, especially since Crowther

was also a fan of role playing games such as D&D. Crowther’s game soon

became very popular and was frequently shared among friends and passed along

over the computer networks. In 1976 development of “Adventure” was taken

over by Don Woods, and much inspired by J.R.R. Tolkien’s Lord of the Rings, he

added many of the fantasy features and game elements that became the hallmark

of the computer adventure game genre. Also in 1976, Jim Gillogly at the Rand

Corporation ported the original FORTRAN code over to C so it could run on

Unix systems, and as a result the game soon spread like wildfire across the

international computer networks (Adams).

For computer science students with a fascination for role-playing games, the

idea of combining the role-playing and multi-player aspects of D&D with the

computer-based structure of “Adventure” was not a strange one for Bartle and

Trubshaw. In fact, it was precisely the sort of challenge that many young hackers

would find highly interesting. In his online biography, Richard Bartle recalls:

Trubshaw soon after hit upon the idea of writing a similar game which

would allow several people to share the game world at the same time. He

Chapter 5156

called his creation MUD and devoted the remainder of his undergraduate

career to writing it. (Bartle “Biography”)

Toward the end of 1979, Trubshaw had written two versions of MUD. They

were both prototype systems written in assembly and because of this, he felt they

had become unwieldy. He eventually decided to rewrite the whole system using

the BCPL programming language. Bartle, who had done some scenographic

design and contributed ideas to the first two versions, now joined the

programming and development effort in earnest (Bartle “Interview”).

Roy had got the shell of his third version of MUD running by the end of

his course, but didn't have time to complete the rest of the game. He

passed what there was to Richard, who added perhaps 75% of what

constituted the final program. Roy had the "engine" working, but it didn't

do much; Richard enhanced it, and employed it to manage a fully-realised

game world. (Bartle “Biography”)

After he had finished work on the third revision of what would be known as

MUD1, Roy Trubshaw graduated and left Essex University. Bartle, who went on

to join the university’s graduate program in computer science and eventually

became a faculty member there, took over the system, and in 1980 he set up the

first public MUD on the University’s DECsystem-10 computer. This MUD went

under the name of Essex MUD and was open to British players via an

experimental packet-switching network called EPPS, which connected six

universities in the UK. Players from outside the UK could also connect via the

ARPANET. Essex MUD was open only at night, between the hours of 2am and

From Code to Community 157

MUD2: View of The Land from Beyond the Vicious Rocks. Courtesy of Richard Bartle.

6am, when no one at the university used the computer for work. It is very likely

that these opening hours contributed a great deal to the popular perception of

MUD players as nocturnal creatures who spent long countless hours in the

solitude of their dorm rooms, hunkered over their keyboards and hacking their

way to the fame and glory of wizardhood. By the time Essex MUD “closed its

doors” in 1987, Bartle had already developed a new version of the system,

dubbed MUD2. The new system had grown out of Bartle’s Ph.D. work in

artificial intelligence and his desire to improve upon the earlier version of the

game. By this time the MUD system was enjoying a good deal of popularity

among fantasy and role-playing gamers and to capitalize upon this interest, in

1985, Bartle and Trubshaw formed a company named “MUSE” to market the

system commercially. When Richard Bartle eventually left Essex University in

1987 to work full time on “MUSE” and MUD2, the MUD phenomenon was on

the verge of its golden age that would soon take it far beyond the imagination of

its creators.

Chapter 5158

In addition to Essex MUD, there was also one other official MUD1 system in

operation in the 1980s. This was the now famous “British Legends,” which ran on

CompuServe from 1987 until 1999 when the company’s DECsystem-10 machine

on which it ran was finally decommissioned as part of Y2K cleanup efforts

(Toth). Thanks to Viktor Toth (a.k.a. MrSpock), in 2000 British Legends was

ported to Windows NT/2000 and can still be enjoyed by fantasy players with a

flair for history (British Legends). Although, Bartle had, in the early days, let a

few other people have copies of MUD to run on their own systems, the

commercial interests behind the software did not permit a widespread

distribution of source code. However this did not discourage talented young

MUD enthusiasts from delving into the breach to design and build their own

MUD-type games, and between 1987 and 1991 a host of new MUD systems

appeared on the scene. Just like in the case of the original MUD ten years earlier,

most all of these second generation MUD hackers were typically college students

with a passion for adventure gaming and computer programming.

One of the first and certainly most influential of the second-generation MUD

systems was AberMUD. It was written in 1987 by Alan Cox (a.k.a. Anarchy), who

was an avid player on Essex MUD while a student at University College of

Wales, Aberystwyth. Cox later became a central figure in the Linux kernel

development. AberMUD was largely inspired by the original Essex MUD; but it

was an independent work done by Cox with the help of a group of other hackers

at Aberystwyth. Unlike commercial MUD games such as MUD2, play on

AberMUD was free, and it soon attracted a large following among students and

hackers both in Europe and the United States. The main influence of AberMUD,

however, was due primarily to the fact that its source code was freely distributed

and shared on the Internet. This allowed anyone to inspect the inner workings of

From Code to Community 159

The Evolution of MUDs with a focus on TinyMUD.

the system and make changes and new modifications to it as they saw fit.

Furthermore, since the AberMUD source code was written in C, it was easily

modified and readily portable across Unix systems. As a consequence, AberMUD

spawned a flurry of new MUD developments in the late 1980s and early 1990s.

TinyMUD

In the summer of 1989, James Aspnes, a graduate student at Cornell University

developed a new type of MUD that he called TinyMUD. Aspnes knew about

AberMUD and similar systems, but he had not studied MUD source code as

such. He had, however, studied the source code of another popular game called

“Monster,” and based on this he set about to write a multi-player game that

would allow players to collaboratively build the game world and the quests and

Chapter 5160

puzzles within (Aspnes “Interview”). In the typical hacker fashion, Aspnes had

the first version of his system up and running in record time—just a weekend of

fast and furious hacking.

From asp Sat Aug 19 05:47:38 1989

To: bsy, clamen, nan@helios.ucsc.edu

Subject: TinyMUD now available via telnet

Reply-to: asp@cs.cmu.edu

do "telnet LANCELOT.AVALON.CS.CMU.EDU 4201" to connect. The

game should be reasonable self-explanatory.

If you have trouble, use the "gripe" command inside TinyMUD to

complain (or if you don't, use it to let me know what you think). Don't

expect too much out of the parser.

Note: it's ok to build things, the database will (mostly) survive crashes and

new program versions.

--Jim (Aspnes “TinyMUD”)

TinyMUD rapidly became a phenomenon that outgrew even its creator’s

wildest expectations. People from all over the world began inhabiting the virtual

world of TinyMUD, and it gradually took on a life of its own and evolved into

something that its designer had not anticipated. The computer program became a

community.

From Code to Community 161

An important reason for TinyMUD’s almost instant popularity was that many

found out about it via highly populated Usenet news groups such as alt.mud.

Another reason that might help explain the TinyMUD phenomenon is that its

creation happened to coincide with the popularization of the synchronous online

communication form known as Chat. In the late 1980s, Internet-based programs

such as Internet Relay Chat (IRC) had created a new digital space in which

communication among people from all corners of the world could take place. The

structure of IRC closely resembled its asynchronous counterpart, Usenet, in that

communication was centered on topics, or channels to which interested parties

could subscribe or connect. In the early 1990s, IRC was growing fast and for

millions of people around the world, the idea of talking to other people, most

often anonymously, by typing on a computer became second nature akin to

chatting with friends on the phone.

TinyMUD, as well as all other MUD systems, could easily facilitate the type of

chat found in IRC. In fact, this type of informal communication had been going

on in MUDs since the very beginning. What made TinyMUD different, however,

was that it had the capacity to create a rich and diverse environment in which to

situate the online communication.

In the original MUD, only the game’s designers could add to, or modify the

game world in significant ways. In MUD 1, for example, Richard Bartle had been

the one to design and build most of the spaces and quests in the game. In later

systems, such as for example Lars Pensjø’s LPmud, dedicated players who

achieved wizard status by playing the game were given access to a special

programming language known as LPC that they could use to build new areas of

the game world, design new quests, monsters, objects and so on. In TinyMUD,

however, the power to create could be obtained by anyone. This in itself was a

Chapter 5162

radical departure from previous systems, but even more groundbreaking was the

fact that players performed these building activities directly inside the virtual

world itself though the use of special commands like “@dig” and “@create.” With

these simple but powerful building tools, users were able to construct digital

landscapes for a variety of purposes. While many of the spaces in TinyMUD

remained game-oriented like Aspnes had envisioned, a growing number of them

also served purposes of a purely social nature, or no particular purpose at all.

In TinyMUD, someone who was interested in, for example, 20th century

Science Fiction literature could easily create a discussion forum that consisted of

several thematic spaces in which to conduct these discussions. Anyone with

Telnet and an Internet connection anywhere in the world could easily connect to

this space inside TinyMUD and participate in the synchronous discussions, or

just hang out and visit, meet new people and make friends in far-flung places.

The attraction of TinyMUD was the social interaction that took place in the

virtual spaces created by its users.

Although TinyMUD represents a milestone in the history of online multi-user

systems, its lifespan remains remarkably short. After only seven months,

TinyMUD began to crumble under the weight of its own popularity. Like a

frontier town that had grown too quickly without any plan or regulation, the

TinyMUD world had, as Aspnes later put it, become “a bloated and poorly-

managed slum overshadowed by its more youthful cousins. It was time to put

the sorry bold beast out of its misery” (Aspnes “Interview”).

MOO

Although TinyMUD Classic was gone, numerous TinyMUD clones continued to

draw in more and more people. The MUD phenomenon was just starting to gain

From Code to Community 163

momentum. One hacker who was totally fascinated by Aspnes’ TinyMUD was

Stephen White (a.k.a. Ghondahrl). In 1990 he wrote, “I've been bitten by the

MUD programming bug, a most heinous disease” (White). His interest in MUDs

related, among other things, to ways in which they could be used for “writing

multi-user interactive fiction and creating a virtual reality.” White’s first attempt

at modifying TinyMUD to his own specifications he called TinyMUCK. He wrote

the new system in “one sleepless weekend” using Aspnes’ TinyMUD source code

and built his own extensions on top of it. Although he thought of it as a “neat

hack” at the time, he eventually came to the conclusion that there were several

problems with it.

I started thinking about what TinyMUD is. Okay, so it's like a virtual-

reality, whose neat attribute is that you can modify the VR from _inside

the database itself_. No need to have separate compilation or external

control; you're actually "in there", modifying the way things work. This

seemed to be the antithesis of edit-compile-run programming, whose

natural interface is "batch mode", rather than interactive. (White)

One of the ideas that White had started thinking about was the addition of a

programming language to the MUD system. The existence of a powerful tool

such as a programming language could, he surmised, make objects a whole lot

more interesting and interactive, and the game world as a whole a lot more

immersive.

Okay, so here's a dilemma: my experiments with TinyMUCK seemed to

indicate that a programming language was needed, but this seems to

Chapter 5164

violate the nature of the VR. Hmm. Well, I talked with James Aspnes

about it, and he seemed to be in favour of a programming language. After

talking with him, he convinced me that it was the way to go. (White)

White’s second attempt at creating a TinyMUD-type system was dubbed

MOO, which stood for Multi-user dungeon Object-Oriented. Around 1990,

object-oriented programming was fast becoming the new program design

paradigm in computer science, and it is not surprising that White would tack on

to this new wave spearheaded by widely used programming languages like, for

example, C++. With MOO, White says, he “opted out of the ‘one crazy weekend’

approach, for the better of the code and my own mental health” (White). He

spent two months on the design and actively solicited comments and feedback

both in Usenet discussion groups and in MUDs that he frequented. MOO was his

big project, and he wanted to get it right.

In the summer of 1990, Pavel Curtis, a research scientist at Xerox PARC and a

graduate of Cornell University, first stumbled upon MUDs. Curtis had found out

about MUDs through MUD-related news groups on Usenet and had looked at

some of the systems he could access online. He eventually came across Stephen

White’s MOO system running on a machine at the University of California at

Berkeley. The MUD was called AlphaMOO, and when he logged in, he met a

person there by the name of Frand who told him about the system and provided

him with some documentation. Curtis studied the information carefully and

concluded that the MOO system showed promise and was worth a closer look.

Because of his background in programming language design and

implementation, he found the MOO language that White had designed of

particular interest. He says: “Stephen had actually done a reasonably tasteful

From Code to Community 165

Pavel Curtis creator of LambdaMOO. Photo courtesy of Pavel Curtis.

language and I think that’s remarkably rare among amateurs” (Curtis

“Interview”). He approached White and suggested that they collaborate on

further developments of the MOO system. The idea of collaborating on

programming projects was not novel to Curtis. He was at the time familiar with

the Free Software Foundation and their GNU project and had even contributed

some to that project in the form of bug reports and bug fixes. Also, Xerox PARC

had a large code base that was freely shared among its programmers, and he had

Chapter 5166

frequently made contributions to that. Stephen White, who had been working on

MOO on and off for some time, readily agreed and sent Curtis a copy of the

MOO source code. Curtis recalls; “It was his [White’s] first large C program so it

had some of the attributes you can imagine, but overall he had done a pretty

good job. He had done a good job of taking code that others had written, the

TinyMUD, or a variant of the TinyMUD network module, and he had brought

that in” (Curtis “Interview”).

Pavel Curtis was different from most other MUD hackers in the sense that not

only was he was a professional programmer with a PhD in computer science, but

he also happened to work for one of the most respected research institutions in

the United States, Xerox PARC. To be sure, his interest in MUD technology was

driven by much of the same curiosity and fascination for clever coding so

characteristic of hackers, but because of his more extensive experience and

training, he was able to look at the MOO project from a systems point of view

and apply his knowledge of large complex systems to the MOO project. White

had built a promising foundation upon which Curtis could refine and enhance

the system. As Curtis poured over his copy of the MOO code during the early fall

of 1990, he would occasionally send bug reports and bug fixes back to White. He

says:

I started sending him bug reports. I had fixed my copy [MOO server], and

I sent him a disk; but at some point he declared that he wasn’t really doing

much with it. He said something like, I am not actually preparing a release

right now so you go ahead, and that’s when I started sort of owning it.

(Curtis “Interview”)

From Code to Community 167

The Beginnings of LambdaMOO

Curtis now began working on the MOO system in earnest. He had numerous

ideas for enhancements and new features that he wanted to incorporate. One of

the things he was particularly concerned about was a security issue known as

“Buffer overrun.” Only a few years before, in November of 1988, Robert T.

Morris, a young graduate student at Cornell University, had written a program

later known as the Internet Worm, which caused serious havoc at Internet

installations all across the world due to its ability to propagate by exploiting

security holes such as buffer overruns. Curtis was not only concerned with

purely technical aspects of the MOO, however. He had also begun to think about

developing a MOO world that would complete the system.

Being new to MUDs, Curtis had assumed that because AlphaMOO was

running on a machine at Berkeley, the people he met there were also from

Berkeley. When he eventually learned that they all came from totally different

places, as far flung as Australia and Israel, it came as a total surprise, and it really

opened his eyes to the community capabilities of MOOs (Curtis “Not Just”).

The MOO system consists of two main components. The server, which Curtis

inherited from White and on which his initial work focused, is what we may call

the MOO’s “operating system.” It handles all the low level system tasks such as

networking, communication management within the system and more. The other

component is the MOO world itself. This is a database with information about

objects in the system, how they relate to one another, how they look, who owns

them, and so forth. Whereas the server is mostly transparent and invisible to the

users, the database is tangible and concrete. It is the virtual world that people

experience when they go to a MOO.

Chapter 5168

On his first explorations into the world of MUDs, Curtis had used the handle

Lambda, so now, when he had his own system, the name LambdaMOO was a

natural choice (Curtis “Not Just”). By the end of October, 1990, Curtis felt that

LambdaMOO had progressed to a point where he could start sharing it with

other people, so on Halloween he invited two of the people he had met in

AlphaMOO to visit the newly established LambdaMOO. These two were Tim

Allen, a.k.a. Gemba, and Gary_Severn. They would both play significant roles in

the early collaborative developments of LambdaMOO. In Curtis’ own words,

that particular evening in 1990 came to represent the “first drops of water in

what later became the rushing river of LambdaMOO” (Curtis “Not Just” 30).

In the weeks and months that followed, the three of them spent most of their

free time working on LambdaMOO. Curtis fondly recalls:

During the earliest days of LambdaMOO, through the beginning of 1991,

everything was fascinating every day. The technical work was especially

so as Gary, Gemba, and I tried to build the core libraries of MOO

programming, as I furiously wrote new functionality into the MOO server

and then furiously wrote new MOO commands that took advantage of it. I

pounded the keyboard for hours at a stretch trying to write a

comprehensive reference manual for this language and system. (Curtis

“Not Just” 30)

The core libraries of MOO programming that Curtis refers to above were the

API’s (Application Program Interface), a new addition that he had brought into

the MOO system. In Stephen White’s original MOO server, functions and

procedures used by the programming language were hard coded directly into

From Code to Community 169

the server software as built-in functions. The downside of this was that only

people with access to the server code could add new programming functionality

to the system. Curtis wanted LambdaMOO to promote programming

collaboration and code sharing, so he came up with a system of APIs located

inside the database itself. These APIs were called Utility Packages, and they

functioned as repositories for often-used utility-type MOO programs. With the

new API system, programmers could now do all their coding inside the virtual

world of LambdaMOO. Curtis says: “The collaborative feel of it was fascinating

as we worked closely together from our separate offices thousands of miles

apart” (Curtis “Not Just” 30).

From Computer Program to Community

During the early days of LambdaMOO, those who visited came mostly on

invitation from Pavel Curtis himself. As it happened, the AlphaMOO at Berkeley

had by this time been shut down, and soon people from there, among them

Frand, the programmer who had given Curtis his first introduction to MOO,

began migrating over to LambdaMOO. A few of Curtis’ coworkers at PARC also

became interested in the new system, and little by little LambdaMOO began to

grow into a small community.

 Judy Anderson, a.k.a. Yduj, a legendary LambdaMOO hacker and wizard,

recalls her first visit to LambdaMOO.

This was in early November of 1990. So, I signed on to this thing and

started wandering around in it and I said; “Oh, it’s a MUD!” He [Curtis]

was all disappointed because I had seen one before. I was walking around

but he hadn’t told me it was the house yet, so it was kind of fun because

Chapter 5170

there I was sitting in the house on some computer walking around in the

LambdaMOO house, and eventually I said, “Wait! This is his house.”

(Anderson)

Curtis had built the LambdaMOO world around the physical layout of his

own house. In keeping with the informal tradition of MUDs, visitors to

LambdaMOO would enter the virtual world though a dark coat closet and

suddenly find themselves in the middle of Pavel Curtis’ living room. Doorways

led off to other parts of the mansion and the surrounding grounds. The textual

descriptions of the various locations were descriptive and true to life, and visitors

really felt that they were present in Curtis’ house without actually being there

physically.

The Living Room

It is very bright, open, and airy here, with large plate-glass windows

looking southward over the pool to the gardens beyond. On the north

wall, there is a rough stonework fireplace. The east and west walls are

almost completely covered with large, well-stocked bookcases. An exit in

the northwest corner leads to the kitchen and, in a more northerly

direction, to the entrance hall. The door into the coat closet is at the north

end of the east wall, and at the south end is a sliding glass door leading

out onto a wooden deck. There are two sets of couches, one clustered

around the fireplace and one with a view out the windows.

From Code to Community 171

You see Welcome Poster, a fireplace, the living room couch, Cockatoo,

Helpful Person Finder, lag meter, a map of LambdaHouse, and The

Birthday Machine here. Dott (dozing), Jethromeo, Mack-the-Knife (out on

his feet), Loki (passed out on the floor), Bear(tm) (distracted), Neeners (out

on her feet), GumNut (dozing), Goat, habibi (navel-gazing), Pink_Guest,

Subwoofer (dozing), Ultraviolet_Guest, and Beige_Guest are here.

(LambdaMOO)

Whether it was the welcoming atmosphere or the exciting technical

developments that went on there, LambdaMOO soon became a regular hangout

for a growing number of outsiders, and with them came new challenges.

I used to personally welcome each and every new user for the first few

months. […] It was neat, all these people from around the country and, as

time went on, from around the world, coming to this program, this server,

this place that I had created; they came, many of them stayed, and many

of those helped make the place even better. It was magical. (Curtis “Not

Just” 31)

Whereas TinyMUD had been an experimental sprawl where pretty much

anything would pass muster, LambdaMOO was from the very beginning set on a

different path. Curtis had realized that he would need help from other people,

not only in regard to the technical programming projects, but as would become

abundantly clear later, also with the day-to-day operation of the MOO. To aid

him, he therefore invited a few of his most trusted online friends to join in a

Chapter 5172

 Store

 |

 West

 Bank---LambdaSt.---Street...

 | |

 Landing |

 Site... |

 | |

 Field... |

 Drive- Powder Guest UNIV

 Garage<--------/ way Room B'room Lib'ry RSTY

 | | | | | |

Housekp--Laundry Dining---Entr.--Corridor----Corridor-<d/u>-Corr--Corr--Intr-

Quarters Room Room.. Hall | | | | sctn.

 | | / | Coat Gnd.F Walkin | Lambda's Guest |

 Family--Kitchen | Closet Stair Closet | Den Room RPG

 Room | \ | / |\ / | ...

 | | LIVING Dressing--Master

 | | ROOM\ Area Bedroom

West of---Yard-----Kitchen \ | |

Gardens... | Patio\ \ H.Bath |

 | doghouse | \ \ \ |

Makeshift Base \ \-----Deck--Hot Tub

 Cafe of Oak \ | Deck...

 Tree \--------\ Pool

 | \Deck...

 Brambles / \

 ... Pool Hedge

 Controls Maze

 ...

ASCII Map of LambdaMOO. Object #15021. May, 13, 2001.

“wizard team.” MOO administrators are called wizards because they are the

most powerful players in the virtual world. In MUDs, the title wizard was used

to denote the highest attainable player class, and was usually only bestowed

upon the most dedicated and experienced players. In a MOO, however, a wizard

is typically someone who has more in common with a computer systems

administrator. Yudj, who had been a close friend and housemate of Curtis in the

1980s, and who had been invited to join the wizard team right from the

beginning explains:

From Code to Community 173

Mostly I was there to get people out of trouble and to help Pavel build up

the infrastructure. There was a lot of stuff that we didn’t have yet that we

have now, stuff that needs wizard permissions in order to run. But there

weren’t really any duties, I was just logged on a lot and I was spending a

lot of time logged on to the MUD rather than working which was a

personal problem for me, but LambdaMOO benefited from it. So I just

hung out at the MUD a lot and when there was some trouble I tried to

help out. I guess back then we had the “Wizards Grant Quota” system, so

if people wanted more quota, I helped evaluate whether they should get it

and that kind of stuff. (Anderson)

Unlike many other MUD operators at the time, the LambdaMOO wizards

were mostly adults. Most of them were also professional programmers rather

than amateur hackers, and this gave the MOO a distinct flavor that set it apart

from other MUDs. LambdaMOO and its wizards would soon enough experience

its share of the social and technical problems that had plagued TinyMUD and

other early online communities, but in those early days the MOO was a blissful

environment where, as Curtis later put it, “everything was fascinating every day”

(Curtis “Not Just” 30).

Throughout 1991 Curtis and his collaborators built most of the core

technology that LambdaMOO has been based on ever since. All the technical

development, except work on the server, which was mainly done by Pavel Curtis

himself, took place inside the LambdaMOO world. It did not follow any set plan

or specification. Mostly people would code things that they needed to

accomplish some larger project, or things that they just thought would be fun or

interesting to do. Programming had been perhaps the most powerful new feature

Chapter 5174

that Stephen White had conceived of, and in LambdaMOO it was used to its

fullest. Yduj says; “The beauty of LambdaMOO is that the extensions, the

building, the richness comes from the programming, so we wanted to encourage

people to program. So, pretty much if you wanted a programmer bit you could

have it” (Anderson). Because of this rich and creative programming activity,

LambdaMOO could soon boast a wide variety of interesting objects, puzzles, and

components.

LambdaMOO’s first puzzle, for instance, was written by Yduj herself. She had

designed the master bedroom and adjoining rooms of the LambdaMOO

mansion, and to make it more interesting, she programmed a burglar alarm that

would be triggered whenever someone entered. The puzzle would challenge the

player to find out how to turn the alarm off. Another of Yduj’s puzzles, one that I

came to experience firsthand on one of my early adventures into LambdaMOO,

was a paper bag that, once you entered it, would not let you out until you had

written a little program that could disable the bag’s locking mechanism. Inside

the paper bag there were clues as to how this escape program might work, but it

took several attempts to actually get it to open the bag so you could get back out.

Paper Bag

Welcome to the Paper Bag puzzle! Hope you're up to it!

A rumpled brown paper bag with the words "Can you program your way

out of a paper bag?" neatly typeset on the side.

Hyperpelosity (asleep) is here. (LambdaMOO)

From Code to Community 175

The Paper Bag puzzle (object #6231) was not only fun and challenging, but it

required you to learn some MOO programming in the process. When asked how

she came up with the idea of the infamous paper bag, Yduj says:

When I make an error [in programming], I often say, “I can’t program my

way out of a paper bag” as some sort of a self-deprecation way of saying

that I made a boo-boo. So, I had this sort of vision that “Look! I have a

paper bag that you can program your way out of.” So that phrase was the

impetus for the creation of that. People are always trying to make little

traps and stuff for others, especially to trap guests or their enemies or

whatever, anyway, so I made this trap, right, but it had hints and clues as

to how to get out. When you try to exit, a verb gets called on your object

and it drags you back, that’s the mechanism that it uses. It evaluates how

it was called and if it was called by a verb that you wrote then it lets you

out, if it was called by a verb that you didn’t write, like @move for

example, then it drags you back. It gives you ten tries or something so if

you keep trying it will let you out. (Anderson)

Another example of early creative programming projects in LambdaMOO is

the role-playing system. Unlike most MUDs, MOO did not have any role-playing

capabilities, so it was not a game in the traditional sense. A typical MUD

command such as kill, or fantasy player classes such as Elves, Dwarves, and Orcs,

for instance, did not even exist in MOO. Although one might play a role-playing

game without these features, the lack of a score system as well as a good NPC

(non-player character) control system did not really allow for proper role-

playing. Gemba and Gary_Severn, who were both dedicated role players, made

Chapter 5176

it, therefore, their first project in LambdaMOO to design and implement a proper

role-playing system. The fact that they could even accomplish a task of such

magnitude by using only the MOO language and the programming tools inside

the LambdaMOO environment attests to the strengths and versatility of

LambdaMOO as a development environment.

In time, many other components would be built, either by the wizards, or by

other programmers in the MOO. The in-MOO mail and programming editors, for

example, nicely illustrate the collaborative and user-driven evolution of MOO

development. Early on, Pavel Curtis had written a simple mail editor that people

could use to send electronic mail to one another inside LambdaMOO. There was

at the time, however, no programming or verb editor, and this made

programming quite difficult for people using client programs such as telnet

without cut and paste capabilities. If they wanted to write a MOO program, they

basically had to type in each and every line of their code, and if the compiler

produced an error, they had to fix it and retype the program again and again

until their code compiled. Needless to say this was an arduous process that could

dishearten all but the most dedicated hacker. Yduj decided to do something

about this, and so she set about to write a verb editor. She says: “I felt so bad for

them because they had to enter their whole verb again each time they wanted to

make a little change, and I was like, “Oh my God I can’t stand this!” so I wrote

simpler version of the mail editor” (Anderson).

Yduj’s editor was line-based, meaning it would accept input one line at a time

just like the default UNIX editor vi. Programmers could now open and edit code

in the MOO directly. Shortly after she had finished the verb editor, another

player, whose name was Roger, told her that he had some ideas for

improvements. He had observed that the mail editor and the verb editor

From Code to Community 177

performed basically the same function, namely, allow people to enter and edit

text. The fact that one had to do with mail and the other with programming was

irrelevant. In an object-oriented system like MOO, abstraction is fundamental.

Since both editors performed almost, but not quite, the same function, he

surmised, one should be able to combine them. In short, Roger’s idea was to

build a generic editor that would contain all the code for general editing, and

then build sub-classes with code specific to mailing and verb programming.

Roger was at the time in the middle of doing his dissertation, but the MOO

programming project must have been much more appealing because over the

next few weeks he designed and implemented a new generic editor system

which replaced both the mail and verb editors.

It seems that the voices of work avoidance tend to get LambdaMOO

having richer stuff. I sort of feel bad that we’re kind of a parasites site in

that way, but oh well! Anyway, so he wrote the generic editor improving

the verb editor that I had written…replaced it and the mail editor that

Pavel had written with his new generic editor stuff. That was, I would say

in the summer of 91. (Anderson)

Another project that Yduj and Roger worked on illustrates what real-time

collaboration on programming in the MOO was like. The project was the MOO’s

player name database. Yduj explains:

We had two windows open, we had our non-wizard characters and they

were somewhere together talking and we had our wizard characters and

they were in private rooms editing. I would say, “I wanna do this to this

Chapter 5178

verb,” and he’d say “Okay, it’s yours,” and would work on it, because

there is no locking, right, and if we are both editing the same verb,

whoever writes it second wins so we had to actually say “I’m going to edit

this verb,” “Okay I’m done now” so we would not step on each other’s

toes. That was kind of fun. (Anderson)

This type of close real-time collaboration didn’t happen as often as one might

think, though. Most of the time, collaborative projects tended to follow the

hacker tradition where someone would write a piece of code and then later

someone else would pick it up and improve or extend it in some way.

One reason for this must be attributed to the MOO’s permission system,

which only allows the owner of an object to edit it. In any multi-user system, an

access control mechanism needs to be in place to ensure that only those with the

proper permissions can read or modify files. In MOO, only the owner of an object

has permission to edit it, so if two or more people wanted to collaborate on a

programming project, they could not easily edit verbs and properties on the same

object without juggling ownership of the object between them. The MOO

permission system does have a write-flag, which, when set, will allow anyone to

edit an object, but the potential security risks involved in this made it impractical

and more or less useless for collaborative purposes. The permission control

system in MOO does not apply to wizards, which explains how Yduj and Roger

were able to collaborate in real-time on the LambdaMOO player database.

Socio-technical Experiences of LambdaMOO

As LambdaMOO’s code base grew slowly but surely, so did its user community.

After a particularly clever April Fool’s Day hack in 1992 where the wizard team

From Code to Community 179

had pulled a prank on Curtis by simulating a system-wide fire and furthermore

appeared to be handing out wizard privileges to everyone so they could help

clean up the place, the popular press became interested in LambdaMOO. From

that point on, the influx of new users would soon number in the thousands, and

with them came new challenges of a socio-technical nature that Curtis and his

hackers had not foreseen. One such problem arose from the way the character

request system was set up. In the early days, character accounts could be created

automatically by anyone, and there was no limit on how many accounts a person

could have. The problem with this was that troublemakers could not really be

banished or shut out from the MOO, since they could easily create another

character for themselves and continue making trouble. To deal with this problem,

the wizards implemented a character application and registration system where

users would be identified by their email address. The development of the player

registration database mentioned above was part of this effort. Another issue that

became more and more of a problem was intentional or unintentional “theft.” A

MOO object that is not locked can be picked up by anyone, and more often than

not, the person that picked it up would not return the object to its original

location. After Frand complained to him about this, Curtis wrote a brief

statement called help manners in which he outlined what he considered to be

appropriate behavior in LambdaMOO. This document was for a long time “the

only written ‘law’ that LambdaMOO had” (Curtis “Not Just” 33). For the

wizards, the law turned out to be a double edged sword, because once it existed,

someone had to sit in judgment, apply the law and settle conflicts that arose

when players broke the law. That someone could only come from the wizards’

own ranks, and even if they shared the responsibility, it soon added a

considerable amount of work to their burdens. After some time with growing

Chapter 5180

tensions within the wizard team, Curtis, therefore, decided that the wizards, who

in his opinion were hackers and not social arbiters, should no longer perform

these duties. In a position statement named “LambdaMOO Takes Another

Direction” (LTAND), he outlined a new policy where the wizards would no

longer interfere with social life of the LambdaMOO community.

It was so simple in my mind: there was a clear distinction between social

and technical, between policy and maintenance, between politics and

engineering. We wizards would become technicians and leave the moral,

political and social rudder to “the people.” […] In hindsight, I forced a

transition in LambdaMOO government, from wizardocracy to anarchy.

(Curtis “Not Just” 38)

What Curtis failed to recognize at this point was that there is no clear

distinction between the social and the technical, that they are in fact tightly

interwoven in a complex mesh that cannot be cleanly disentangled.

LambdaMOO would pay for this oversight. Once central control of the

community had been disbanded, social conflicts soon reached new heights that

culminated with the now infamous “Rape in Cyberspace” affair chronicled by

Julian Dibble in the Village Voice (Dibble).

The whole affair started when a character named Mr. Bungle created a

remote-controlled puppet and used it to verbally abuse other players. The abuse,

which had clear sexual overtones, hence the reference to rape, caused a public

outcry in the LambdaMOO community and people started calling for the

removal of the Mr. Bungle character. Pavel Curtis was away on a business trip

when all this happened, and in order to contain the situation, another wizard

From Code to Community 181

took it upon himself to disable Mr. Bungle’s account. This reaction, however,

fueled another public outcry of even bigger proportions; the wizards had

promised to stay out of social conflicts and now they had broken that promise.

The incident has been described and analyzed many places (see, for example

Vitanza), so I won’t go into further details here; but it had a profound bearing on

the socio-technical developments that followed. The state of anarchy in which the

cyber rape incident occurred had to be brought to an end. Curtis’ problem was

how to do it without resorting to what he called the “wizardocracy” of past. The

solution that he chose was a form of direct democracy using a petitions-and

ballots system. Curtis explains:

Once again, […] I forced a governmental transition on the MOO; we

would, I declared, move from anarchy to democracy. […] It was simple in

outline: any LambdaMOO citizen could create a petition proposing that

the wizards take some action; if it got enough signatures, it became a

public ballot measure that passed on a two-thirds majority vote. (Curtis

“Not Just” 39)

The technical infrastructure for the new democratic system that the wizards

eventually developed is a striking example of the way technological solutions

arise out of non-technical challenges and how they in turn are used to support

social and political decisions and processes. Through the experiment with direct

democracy, the LambdaMOO community was able to pass several successful

measures, but according to Curtis, overall it failed to live up to expectations. He

says:

Chapter 5182

It seems to me now that the voting population could never agree on any

measures of real substance. […] On LambdaMOO, this incapacity

engendered a profound stagnation; true progress is impossible to achieve

in the petition system. (Curtis, “Not Just” 40)

By 1996, social tensions and conflicts again reached the breaking point. Curtis

explains: “The wizards have been at every turn forced to make social decisions.

Every time we made one, it seemed, someone took offense, someone believed

that we had done wrong, someone accused us of ulterior motives. […] The result

was a constant stream of messages to the wizards full of anger, suspicion, and of

stress” (Curtis “Not Just” 41). Once again, Curtis was compelled to step forward

and change the course of events, and together with the other wizards, he drafted

a third pivotal policy statement that was made public to the LambdaMOO

community on May 16, 1996. In it, he says, “we formally reputed my earlier

theory of a social/technical dichotomy; we explained how impossible that fiction

was and declared our intent to cease apologizing for our failures to make it

reality. It was, in a way, a wizardly coup d’etat; out with the old order, in with

the new” (Curtis “Not Just” 41). Throughout the entire affair of social tumults in

LambdaMOO, the hackers had learned an important lesson—technology is

inherently a social affair.

The Lambda Distribution

From the time Curtis first started hacking on the MOO server, it had been his

intention to give it back to the MUD community. The source code had originally

come from Stephen White, so his employer, Xerox PARC, he says, was not able to

place any intellectual property restrictions on it even if they had wanted to. This

enabled Curtis to distribute his modifications freely. The first release of the

From Code to Community 183

LambdaMOO server, as Curtis now called it, coincided with the public opening

of LambdaMOO itself in 1990.

From the beginning my intent was to give it back. In fact, as soon as

Stephen sort of bowed out I started hacking on the code in earnest, to fix

bugs and improve the quality of things and write documentation.

LambdaMOO the server and LambdaMOO the community were

announced publicly on the same day and that had been the plan the whole

way along. I set certain goals for cleaning up the server and its language

early on, and one of the goals was that I wanted a complete manual for the

language and its libraries and that there were no built-in commands

unless it was absolutely necessary. (Curtis “Interview”)

Along with the server, Curtis also distributed what he called a Minimal MOO

database that people could use to build their own MOOs. The Minimal database

was an extraction of the AlphaMOO core by Gemba and Gary_Severn. It defined

the first ten or fifteen objects in the database and was in fact what Curtis himself

had used when he built the original LambdaMOO database. The Minimal

database had most of the core functionality necessary to run a MOO, but it did

not have any of the added libraries and features that were being built in

LambdaMOO proper. When the decision eventually was made to include the

more feature-rich core of LambdaMOO with the server distribution, it did not

come at anyone’s request. “It was the natural thing to do,” says Curtis (Curtis

“Interview”).

With a powerful, streamlined server and a rich user programmable core,

MOO was now among the most potent development environments in the MUD

Chapter 5184

world. Many of the more technically savvy users of LambdaMOO soon began to

look with interest on the Lambda distribution as a jumping-off point for building

their own MOO systems, and in time, so would many others.

The LambdaMOO Server

The LambdaMOO server development was almost exclusively handled by Pavel

Curtis. He did have a few summer interns at PARC that helped him out on

certain things, but mostly he wanted to be in control of the development.

LambdaMOO had become quite a prestigious project. It had from the very

beginning been his pet project, so of course he cared a great deal about it for that

reason, but, as MOO started to become popular, and more and more people

downloaded and looked at the code, it became increasingly important that the

code met more rigorous standards for pedagogical clarity, efficiency and

elegance. Curtis says:

I was certainly writing code for an audience both in the sense that I knew

there were lots of people who were downloading the server and compiling

it and running it, but also in the sense that, and I made a very strong point

of this to the summer interns that I got, that the code we were writing was

going to be read by other people and needed to be of pedagogical quality.

(Curtis “Interview”)

The fact that other people would be reading his code and not just using the

binary server program led to a heightened sense of self-awareness that ultimately

produced a better and more durable product. Being a professional programmer,

Curtis tended to be quite strict in matters of quality of code in general, but he

From Code to Community 185

says: “I would not have been quite as strict if I had not been going through an

audience. There was also a strong sense that these programs were hard to

understand. I knew that they were not that complicated and I wanted them to be

understandable, so I had almost a pedagogical purpose in mind” (Curtis

“Interview”).

His work on the LambdaMOO server had, by 1993, led to a new in-house

project at PARC named Jupiter. The Jupiter project was based on the

LambdaMOO server, and had a graphical user interface and live audio and video

capabilities. It had grown out of the experiences with LambdaMOO, and was

targeted at professional online collaboration. Work on the Jupiter project had

revealed a number of shortcomings in the LambdaMOO system. One of them

was the lack of a proper system for error handling. As he worked on Jupiter,

Curtis would make notes of the fixes and new features that he implemented, and

in time he would roll many of them back into the LambdaMOO server. Almost

none of these new changes came about as a result of pressure from the MOO

programmer community. Curtis says, “Nobody outside of PARC was knocking

down my door saying we need error handling and we need it more structured

than the d-bit” (Curtis “Interview”).

Early on, Curtis had set up a mailing list for developers called MOO Cows.

The list was intended to function as channel of communication between Curtis,

the developer, and the growing community of MOO programmers and

administrators. According to Curtis, the list failed to generate any substantial

contributions of code to the server development effort, but this, he admits, may

partly have been his own doing. He explains: “I would occasionally get server

patches, or people pointing out a bug and maybe not necessarily giving me the

patch. I may very well have projected a ‘this is my server, I’m the one who is

Chapter 5186

qualified to do this’ etc. etc., which may have encouraged people to just tell me

about problems and not give me solutions” (Curtis “Interview”).

By 1996 Curtis was looking to end his involvement with LambdaMOO. The

social tumults in the LambdaMOO community had taken its toll, but more than

that, after six years of dedicated MOO development he felt it was time for him to

move on. Together with a group of colleagues from PARC he had founded a new

startup company, PlaceWare, which developed and sold online conferencing

systems. Before he left, however, Curtis appointed Eric Ostrom from the early

and very influential Jay’s House MOO to be the new server maintainer. Ostrom

produced one release of the LambdaMOO server before he in turn left the

maintenance to Ben Jackson and Jay Carlson, also of Jay’s House MOO. The Jay’s

house people incorporated many new features and performance improvements

that they had developed, and with the establishment of the SourceForge Open

Source development site they eventually moved the LambdaMOO server project

there.

LambdaCore

The development of the LambdaCore database distribution took a different and

more collaborative direction. Although Pavel Curtis was the arch-wizard of

LambdaMOO, his influence did not have nearly the same effect as it had on the

server development. To be sure, the wizards did develop many of the core tools

and features, but other programmers in the LambdaMOO community also

contributed to it. Curtis explains:

On the database side people brought it in [code] themselves, and the key

people who were innovating were the Jay’s House MOO folks, and Judy

From Code to Community 187

[Yduj] was one of those. She was a wizard at LambdaMOO so when

something was developed over there it got brought in directly, but by and

large people were doing it themselves inside the MOO. There would

occasionally be a single verb wizzified and we would go and look at it and

try to understand what it was trying to do. Then people did things like

inter-MOO portals and all sorts of things once open network connections

were available and mostly they were just doing those things inside the

MOO and sometimes asked us to take them over. So I think it was really

quite different from the usual open source thing. (Curtis “Interview”)

Over time, the LambdaMOO core became a collage of code collaboratively

authored by a large number of programmers. Some contributed large system

components such as the editors mentioned above; others contributed smaller

programs or improvements on existing code. Sometimes the programmers would

team up to implement new ideas, most of the time though they would work

alone. Communication between them happened either in real-time in the MOO,

or via the MOO mailing list system. Yduj says; “It was a very subtle kind of

collaboration because there wasn’t a hierarchy of people who decided what to

do. The project was always sort of free-floating” (Anderson).

There was no set release schedule for when new versions of the LambdaCore

would come out. It would simply happen whenever one of the wizards decided

that it was time. Yduj, for example, didn’t have any plans one Christmas, so she

decided it would be a good time to work on a core release. She says; “I would

make the announcement and then there would be a frenzy of work for the next

month while people added stuff that they wanted to go in the core” (Anderson).

Chapter 5188

Whenever a piece of code was put in the core, ownership of it was transferred

to one of two special characters, Hacker or Wizard, and there would typically be

no trace left of who was the original programmer. Occasionally a programmer

would include her name in a comment in the code, but in most cases,

programmers who contributed code to the LambdaCore remained anonymous to

the outside world. For people who used LambdaCore to build new MOOs, the

core appeared to be one large collectively-owned code base.

The Legacy of LambdaMOO

While the life span of the seminal TinyMUD was short and frantic, LambdaMOO

is still online today (2003) 13 years after its inception. Over the years the

community has changed character as its core users have gotten older. These days

LambdaMOO is more like the small sleepy home town where people come to

visit old friends and remember the legacy of days gone by when the community

they grew up in was right there on the digital frontier of Cyberspace.

In my view, the most important legacy of LambdaMOO falls into three

categories. One, which has received a lot of press and scholarly attention over the

years, has been the experiments with online government. For easy reference we

can divide these experiments into the following stages:

• Feb. 1991 – Dec. 1992: “Enlightened dictatorship.”

• Dec. 1992 – May 1996: Anarchy.

• May 1996 – present: Direct democracy.

Through the government experiments, the LambdaMOO community has, as I

have discussed above, taught us important lessons about the relationship

From Code to Community 189

between social and technical issues in virtual worlds, and the dynamics between

system administrators and users.

Another important legacy of LambdaMOO is the Lambda software

distribution. Because of it, starting new MOOs became a lot easier; and as a

result, the early 1990s saw a growing number of MOOs coming online. Most of

these new MOOs were started by people who had been regulars at

LambdaMOO, and many of them were simply emulations of the social space of

Lambda. A few of the spin-offs, however, managed to break new ground. Jay’s

House MOO, for example, which was one of the earliest new MOOs, quickly

established a reputation for being a hacker’s haven. It was created by Jay Carlson

and a few of his hacker friends, and many of the technical advances in the MOO

world after Lambda came from there. In the beginning, code improvements and

new features from Jay’s House MOO would find their way into LambdaMOO,

but eventually the Jay’s House crowd developed their own core database

distribution dubbed JHCore. While being completely compatible with

LambdaCore, the JHCore sported a number of new features and enhancements

that made it, in certain ways, more advanced that the original LambdaCore.

A third legacy of LambdaMOO is the academic and educational MOO. In

1992, Amy Bruckman, a graduate student at MIT, started MediaMOO as an

online meeting place for media researchers. MediaMOO became in effect the

birthplace for a whole new direction in the evolution and use of MUD

technology. By 1995, the utilization of MOO technology for professional and

educational purposes was taken up by new MOOs such as BioMOO, AstroVR,

CollegeTown, Diversity University, Connections, MOOville, DaMOO and

LinguaMOO, to mention just a few. In the following chapter I will look at the

Chapter 5190

development of one of these educational MOOs, Lingua MOO, and the enCore

Open Source Project that followed from it.

Conclusions

The case study in this chapter has focused on a unique hacker technology, one

that did not exist prior to being invented by Bartle and Trubshaw in 1979, and

one that could not have existed in its current form if it were not for the

evolutionary hacker development model. It all began because Bartle and

Trubshaw decided they wanted to play fantasy games in a multi-user online

environment. No one had told them that MUD would be a neat idea. They

simply invented the concept just because it was an interesting challenge that

could produce something that would be fun to play with. When the MUD

phenomenon caught on, others such as Alan Cox became interested in how it

could be modified and expanded, and since the MUD source code was not

available due to commercial restrictions, he and his hacker friends developed

their own version of MUD. When the AberMUD source code was eventually

released, anyone who was interested could look at it and see for themselves how

a MUD worked. This spurred a flurry of activity in the MUD community, and

new versions of MUD sporting funny and imaginative names such as TinyMUD,

LPmud, TinyMUCK, FurryMUCK, DikuMUD, MUSH, MUSE, and MOO

appeared in numbers. Many of these systems had the basic gaming functionality

of the original MUD, but they were also individually different. In the late 1980s

and early 90s new MUD installations such as the ones mentioned here were one-

of-a-kind systems. They were unique because of the extensive system level

modifications made by the hackers that established them. With LambdaMOO

and the LambdaCore distribution in the 1990s, that uniqueness gave way to a

From Code to Community 191

more uniform evolution. The LambdaCore distribution provided a feature-rich

platform that made system level hacking less compelling, and with the addition

of a simple but powerful programming language, the focus of MOO

development shifted toward community building. Other branches of the MUD

technology tree evolved in a similar fashion. The LPmud system, for example,

also had a programming language named LPC (after its inventor Lars Pensjø)

and a core database, called “mudlib,” that ensured consistency and compatibility

between the many LPmuds that were built during the 1990s.

The evolution of MUD was, in many ways, akin to a relay race. As old

programmers tired of development and moved on, new programmers stepped

up to the plate to carry the technology forward. Whereas some branches of the

MUD technology tree eventually withered and died because no one took a

concerted interest in furthering them, others, such as MOO, blossomed and

advanced the technology. The difference between the relay race and the MUD

evolution, however, is that the latter did not have any particular goal in mind. It

went where its users wanted it to go. There was no one owner or entity that

determined its history. MUD technology was owned collectively, and developed

collaboratively, by the community of people that used it.

Chapter 5192

6

Between Theory and Practice

Lingua and the enCore Open Source Project

If we accept the idea that all knowledge is socially constructed, then there

is no theory outside practice, and no neutral and objective place outside

practices.—Gayatri Spivak

The collaborative software development methodologies, which were the subject

of previous chapters, form the framework for the enCore Open Source project

that will be discussed here. As I have shown through the case studies of BSD,

GNU/Linux, Apache, and Mozilla, the Open Source model has yielded some

remarkable results for hackers and programmers in what we might call the

traditional areas of software engineering. Through the enCore project I wanted to

see if this model could also be successfully applied to programming and

development efforts situated in the humanities.

The chapter opens with a brief history of the academization of MOO

technology in the early 1990s and goes on to discuss the notion of the educational

MOO as it materialized from the mid 1990s onward. As an example of one such

educational MOO, I will focus on the Lingua MOO project, which was begun by

Professor Cynthia Haynes of the University of Texas at Dallas and myself in

Chapter 6194

January of 1995. Based on experiences from the Lingua MOO project, in 1997 we

began the new project called High Wired enCore. The rationale for this project

was to spread the use of MOO technology in education through traditional book

publishing efforts as well as the distribution of a MOO software package called

enCore. The main portion of this chapter is devoted to a discussion of enCore

and the Xpress Graphical User Interface that I later developed under the

umbrella of an Open Source project. The chapter concludes with some thoughts

on results from this project and the Open Source development methodologies

that I used.

Amy Bruckman and MediaMOO: Academic MOOs in the Making

LambdaMOO’s growing popularity in the early 1990s attracted all sorts of people

to the online community. Some came because they wanted a change of pace from

the typical adventure role-playing world of MUDs. Others came and stayed

because they enjoyed socializing with folks online. Yet others stopped by simply

because they were curious to see what synchronous online communities were all

about. While most users were content simply to avail themselves of the services

provided by Pavel Curtis and the LambdaMOO staff, others discovered that

MOO was a powerful community-building technology waiting to be explored.

One of those who saw a potential in MOO technology was Amy Bruckman, a

graduate student of MIT’s Media Lab, who in October of 1992 founded the online

community MediaMOO. She says:

Most MUDs are populated by undergraduates who should be doing their

homework. I thought it would be interesting instead to bring together a

group of people with a shared intellectual interest: the study of media.

Between Theory and Practice 195

Ideally, MediaMOO should be like an endless reception for a conference

on media studies. (Bruckman “Finding” 17)

The virtual place that Bruckman created became, in effect, the birthplace for

much of the academic research and professional activities related to MOO

technology in the 1990s. At its most popular (1995), MediaMOO had over 1000

members from 39 countries with several academic groups such as the Techno-

Rhetoricians, the Netoric Project and Tuesday Café, all of which utilized

MediaMOO for online meetings and other professional .

In 1993, not long after Bruckman founded MediaMOO, Gustavo Glusman, a

student of the Weizmann Institute of Science in Israel, founded another early

academic MOO called BioMOO. Just like MediaMOO was designed as an online

meeting place for media researchers, BioMOO was designed as a virtual meeting

place for biologists. According to BioMOO’s purpose statement, which echoed

the one Bruckman had written for MediaMOO, “BioMOO was a professional

community of Biology researchers. It is a place to come meet colleagues in Biology

studies and related fields and brainstorm, to hold colloquia and conferences, to

explore the serious side of this new medium” (Glusman “Purpose”). Over the

years, BioMOO played host to a number of academic groups within biology and

bioinformatics. The Ecology and Evolution Journal Club, the Neuroscience

Journal Club, and other groups used the space for online meetings in the mid 90s.

Although MediaMOO and BioMOO were not the only academic MOOs in the

early 1990s, they are both good examples of the professionally-oriented spaces

that people sought to create at the time. In the minds of most people, MOOs and

MUDs in general were games and not something suited for serious academic

Chapter 6196

Amy S. Bruckman, creator of MediaMOO

purposes. The creators of these first generation academic MOO spaces, therefore,

sought to legitimize the use of the technology by focusing strictly on traditional

professional activities such as conferencing and networking. In the case of

MediaMOO, the target was media studies; in the case of BioMOO, Biology and

Bioinformatics. Another early MOO, AstroVR, was designed for astrophysicists.

Such was the nature of the discipline-oriented first generation of academic

MOOs. Special purpose statements were drawn up in order to emphasize the

professional nature of the systems, and anonymity, a fundamental feature of role-

playing games (RPG) and social interaction oriented MUDs, was abolished in

Between Theory and Practice 197

favor of responsibility, accountability, collaboration, and networking among the

members.

While LambdaMOO had always had an open-door policy, where anyone

could become a member, the early academic MOOs adopted more stringent entry

requirements. Only those who in some way could claim a connection to the

mission and purpose of the MOO were eligible to join. In the case of MediaMOO,

Bruckman explains that she was “loose on the definition of media—writing

teachers, computer network administrators, and librarians are all working with

forms of media—but strict on the definition of research (Bruckman, “Finding”

19). Michael Day, one of the MediaMOO veterans explains:

MediaMOO always has had a strict character application policy. When

you do @request name for email, you have to answer a series of questions

about your research interests, and at its peak, a team of 5 reviewers would

review the applications to let Amy, former head janitor (as wizards on

MediaMOO have always been called) know whether to accept someone or

not. (Day)

Strict admission policies notwithstanding, MediaMOO was a popular place in

the years between 1993 and 1997. Some of the people who found their way to

Bruckman’s digital world were not content just using the technology for

themselves. They wanted to share it with their students to see how such online

spaces could help enhance teaching and learning. In MediaMOO, however, there

was little or no room for this type of activity. One reason might have been that

MediaMOO was so popular and attracted so many users that there was simply

no additional bandwidth to accommodate large classes of students. Another

Chapter 6198

reason, which seems to resonate well with MediaMOO’s emphasis on

professionalism, might have been that large groups of potentially unruly

undergraduate students would not be conducive to the serious academic

community that Bruckman wished to foster. Starting around 1994, therefore, a

few members of MediaMOO began setting up their own academic MOOs

specifically for educational use. The LambdaMOO source code was readily

available online, and with some knowledge of MOO and Unix systems it was not

too difficult to get started. One of the first new educational MOOs was

CollegeTown, built by Professor Ken Schweller of Buena Vista University in

Storm Lake, Iowa. Schweller had been a LambdaMOO regular since the early

days and also one of MediaMOO’s first and most active members. Collegetown

MOO was modeled after a traditional college campus with academic buildings,

lecture halls and office spaces for faculty situated around the virtual commons. In

the small but growing world of educational MOOs, Collegetown MOO was

known for its consistent use of detailed ASCII graphics to represent the spatial

organization of the digital space.

For many students, and especially teachers in the mid 1990s, the text-based

virtual reality of MUDs was something quite foreign and unsettling. A simple

two-dimensional ASCII representation of spatial layouts, therefore, went a long

way toward visualizing the geography of the textual world. A more detailed

discussion of various aspects of spatial representation and layout in MOO design

will follow later in this chapter.

Collegetown was only one of many new academic MOOs that sprang up

during the mid 1990s. MediaMOO had inspired most of them, but they also had

another thing in common, most of them were designed for educational use. In the

Between Theory and Practice 199

Collegetown MOO. ASCII map of the forum.

next section of this chapter I discuss the creation of one of these new generation

educational MOOs.

Designing Lingua MOO

LinguaMOO was started by myself and Professor Cynthia Haynes of the

University of Texas at Dallas (UTD) in January of 1995. At the time, Haynes was

a visiting professor at UTD, while I was working for a science policy research

institute in Oslo, Norway.

When we first started the Lingua MOO project we had two main research

objectives in mind. First, we wanted to see whether a technology that had been

developed primarily for the purposes of gaming and social interaction could also

Chapter 6200

prove to be a viable and interesting environment for teaching online. Secondly,

we wanted to explore the potential of MOO as a collaborative online research

environment. As we set out to design and build LinguaMOO, therefore, we had a

set of key design objectives in mind. Specifically, we wanted to create a new type

of learning environment that would:

• Facilitate collaboration.

• Encourage communication.

• Stimulate the students’ interest in reading and writing.

• Transcend geographical and cultural barriers.

• Be a fun and creative place to work and socialize.

• Provide a space in which to conduct as well as present collaborative research

and writing.

As we set about implementing our ideas, the MOO rapidly became the

vehicle for its own construction. Working out of her home in Fort Worth, Texas,

Haynes drew up plans for the various facilities we wanted the MOO to

accommodate, and she secured a space for the project on one of UTD's internet

servers. From my office in Oslo I downloaded and installed the LambdaMOO

distribution on the UTD server. Once everything was up and running we could

both log in from our different locations and begin the task of designing the first

few public spaces in the new MOO. Nowadays this kind of tele-work is

commonplace, but back then we were both amazed at how well MOO technology

facilitated this type of collaboration. It appeared that LinguaMOO was yielding

some interesting and productive results even as it was being built.

Between Theory and Practice 201

The courtyard of LinguaMOO. Spatial concepts in textual space.

Before we started actually building the MOO, we went on the Net to see what

other people were doing. Besides MediaMOO, BioMOO, Collegetown, and a few

others, there weren't many educational MOOs in existence at that time; so we

gathered what inspiration we found and added our own ideas about how we

thought an online learning space ought to look like. In our original design of

LinguaMOO, we wanted to situate the learning environment within the ancient

Abbey of Umberto Eco’s novel, The Name of the Rose. We thought the ancient

pastoral setting of a medieval abbey would provide an interesting juxtaposition

to the modern day technology used to implement it. Also, by situating the MOO

within the framework of a novel we hoped to foster the notion of writing as

building blocks of community. Thirdly, the dark, brooding, almost gothic

atmosphere of Eco's novel provided a kind of thrill and excitement that we

Chapter 6202

hoped would stimulate our users to be creative in the design of their own spaces

within the MOO.

Choosing the ancient abbey as our architectural metaphor allowed for a star-

shaped layout with a central hub, “The Courtyard,” and the various main areas

of the MOO, such as the teaching and research areas (The Library), the

administrative offices (Lingua House), and the player quarters (The

ComMOOnity), were directly connected to it. The spatial orientation provided by

such concepts as rooms and locations, exits and entrances, objects and players

reinforces the sense of space, place, and time in which we wanted to situate the

online learning experience. Because these are concepts that we all know well

from the world we live in, we hoped they would ease the transition from the

physical to the digital learning environment by giving students known concepts

and cues with which to navigate, negotiate, and domesticate the space.

During the late winter of 1995 we spent a great deal of time online designing

and redesigning the public spaces of Lingua MOO. This included creative work

such as building and writing descriptions and ASCII maps for rooms and other

objects, but also technical work such as bringing in objects and features from

other MOOs, as well as making various modifications and additions to the MOO

core database. One of the first things we did in this respect was to remove as

much evidence of the system's gaming roots as we possibly could. For example,

we replaced the keywords player and wizard with user and administrator. The

original words were later reinstated, but in the beginning we felt that it was

important to create a professional looking system that would garner the support

of faculty members and university administrators.

Although most of the early design work was done by us, we did have outside

help on special projects, the most important of which included a simple World

Between Theory and Practice 203

Wide Web interface originally written for Collegetown MOO by Mark Blanchard,

as well as a fairly sophisticated inter-MOO communications network by Gustavo

Glusman of BioMOO. By late March we felt that the Lingua system was ready to

receive its first users. The grand opening ceremony was scheduled for April 4th

1995, and the big day was celebrated with much virtual champagne and

fireworks.

Since neither of us had much prior experience with software development

and user support, the first couple of months after the opening brought new

lessons every day. Among the first things we learned was that in a creative space

such as the MOO it is almost impossible to steer and control the evolutionary

direction of the space. Enterprising users soon added their own areas to the

MOO, which had totally different themes than the one we had envisioned, so

over time the evolution of the Lingua MOO environment came to resemble a

typical urban sprawl rather than the planned, linear design of a software

program.

Another thing that we learned early on was that the users were in fact our

most important assets. Not only were they instrumental in helping us find and

fix bugs and other malfunctions, but also many of them became important

sources of inspiration with regard to ideas for enhancements and new features. A

case in point is Dr. Brian Clements (also at that time with UTD) who, besides

Haynes, was one of the first teachers to bring students into Lingua MOO. After

he had used the system for a couple of weeks, he came to us one day and asked it

there was a way to simultaneously monitor and record student activity in

multiple rooms. He had already attempted to use the basic recorder object that

we had brought in from another MOO but had found it lacking in several

respects. We asked him to give us a specification of the features that he wanted,

Chapter 6204

and with this in hand we were able to develop a new system which became

known as the Lingua MOO Recording and Intercom System. Another example of

user-driven MOO development is the Moderated Room that we developed for

Dene Grigar’s doctoral defense, the online portion of which was held in Lingua

MOO on July 25th 1995. When Grigar first asked us if she could hold her doctoral

defense in Lingua MOO, it was evident that the basic MOO room would not be

able to accommodate a serious academic event such as a Ph.D. defense. The main

problem was that the basic room had no mechanisms for controlling speech;

anyone can say and do whatever they wanted at any time; and this, we surmised,

could create problems and reflect poorly not only on the candidate, but also on

us and MOO technology in general. We began searching for alternatives and

found that Ken Schweller had developed a moderated room for Collegetown that

he called the Classroom. This room had a limited set of moderation features in

that the owner (typically a teacher) could set up a series of tables at which

students could communicate privately without disturbing the rest of the room.

With Professor Schweller's permission we ported the Classroom to Lingua and

did some testing to see how it would work for a conference type event. After a

few weeks it became clear, however, that the classroom's moderation features

were not rigorous enough for what we needed. In the process of porting and

installing the code for the Collegetown classroom we had learned how the room's

speech control system worked; so we decided to build a new moderated room

with our own features based on that code. The new room, which became known

as the Moderated Room, was based on the notion of an auditorium where the

speakers and the audience occupy two different and clearly defined areas of the

room. Speakers are often seated on a stage or a panel, whereas the audience

members are seated in the audience. This concept allowed us to implement a

Between Theory and Practice 205

system where speakers could address the whole room, but audience members

could only talk among themselves. If they wanted to ask a question of a speaker,

they had to send it first to a moderator who in turn could field it to a speaker at

the appropriate time. To make the room more versatile we also built in a feature

that allowed the moderator to open it up for free discussion much like a basic

room. As it turned out, Dene Grigar's Ph.D. defense in Lingua MOO became

quite a success with more than fifty people in attendance from all over the world

(Grigar “Dene Grigar’s Online”).

The online dissertation defense, as well as many of the other early Lingua

events, demonstrated that MOO technology held a greater potential than many

of us had realized. From a technical point of view, what might have taken several

professional programmers to write in a traditional proprietary environment, all

the technology needed to produce the online defense was accomplished with free

software and less than 100 lines of specialized MOO code by two humanities

scholars. From a pedagogical point of view, we could see that students and

others were able to make the MOOspace their own by constructing personal

spaces within the virtual world. The MOO system provides simple but effective

tools that allow users to extend and decorate new spaces; and by doing this, we

found, users domesticated their learning environment by investing in it. Instead

of being simply a tool for learning, like most traditional instructional software,

the MOO became a place where they could also engage in extra-curricular

activities, such as meeting old and new friends from all over the world, or just

hanging out after school. Another thing that became increasingly clear was the

importance of the very reasonable technical requirements for accessing and using

the MOO system. Basically all that is needed to use a MOO is a simple telnet

connection; and this made it possible for anyone with an Internet connection,

Chapter 6206

regardless of computer platform (i.e., Mac, Windows, Unix, etc.) or network

speed, to be able to access the system and use it productively. No student was left

behind because of the lack of state-of-the-art technology. In academic settings,

where schools often have older computer technology in their labs, this made a

strong case for MOO technology in education.

Lingua MOO was primarily designed as a learning environment; and in

addition to being used extensively by freshman writing classes from UTD, we

also supported classes from other schools across the world. Many of the outside

institutions who availed themselves of the services provided by Lingua MOO

would later set up their own educational MOOs, while others have continued to

take their students to our MOO.

The following list includes some of the institutions that Lingua MOO catered

to during this time:

University of Bergen (Norway), Old Dominion University, Hanyang University

(South Korea), University of Wisconsin, Shlzuoka University (Japan), Colorado

State University-Boulder, Colorado University-Denver, Institute for Media

Communication (Germany), Nottingham University (England), George Mason

University, University of Southampton (England), University of North Carolina-

Greensboro, University of Illinois-Chicago, University of Louisiana-Lafayette,

University of Sioux Falls, South Dakota, University of Texas at Austin, University

of Texas at Arlington, University of Rochester, New York, Texas Tech University,

California State Polytechnic University, Southern Methodist University, Ohio

University, Purdue University, Vassar College

Between Theory and Practice 207

William Gibson visits LinguaMOO. October 9, 1999

Over the next few years Lingua MOO also played host to a number of

academic conferences and meetings. The organization TOHE (Teaching Online in

Higher Education) held their annual conferences in Lingua several years in a

row, and other groups such as ELO (Electronic Literature Organization), the e-

journal Kairos, and trAce online writing community also used the space on a

regular basis. All of these groups helped make the MOO a vibrant and creative

community where you never knew who you might run into.

By 1996 we started to see a growing interest in MOO technology coming from

a number of new academic areas. Whenever we presented the Lingua MOO

project at conferences such as the Modern Language Association (MLA),

Conference on College Composition and Communication (CCCC), and

Chapter 6208

Computers and Writing (CW), there was always a significant interest from

people who wanted to learn more about the technology and how it might be

used for learning purposes.

From the very start of the Lingua MOO project we had offered educators

from other institutions space in the MOO for their own projects and classes.

However, as their proficiency and experience with the digital learning

environment grew, many of them began to think about setting up their own

educational MOOs. Also, during this time we heard from several educators

outside the LinguaMOO community who wanted our advice and assistance in

starting educational MOOs of their own. It was clear that we could not possibly

help everyone who wanted to set up a MOO, but what we could do was to create

a resource that would teach interested parties how to establish and teach with

MOO. Thus was born the High Wired project.

High Wired: The Beginning of an Open Source Project

While the philosophy of Free Software was fairly well known in most technical

areas of academia, in the humanities it was still largely an unknown

phenomenon. Thus, it didn't occur to us at first to create a complete software

package as part of the effort to get more educators involved with MOO. Instead

we went the traditional humanities route of publishing a book.

The ideas for the book had begun to materialize as early as the summer of

1995, and the basic idea was to create a resource that would teach prospective

MOO administrators and teachers not only how to set up and run a MOO, but

also instruct them on how to teach with it, as well as provide a theoretical

framework for educational MOO activity. To this end we invited a number of

scholars and researchers with an interest in MOO technology to each write a

Between Theory and Practice 209

High Wired: On the Design, Use, and Theory of Educational MOOs. University of Michigan

Press, 1998.

chapter on their respective areas of expertise. As it turned out, the University of

Michigan Press picked up the book early on; and for the next year and a half we

were busy writing and editing the manuscript of the book which came to be

named High Wired: On the Design, Use, and Theory of Educational MOOs. The first

edition of High Wired was published in 1998, while a second edition of the book

with updated information on how to set up enCore MOOs with a new graphical

user interface named Xpress was published in 2002.

Our original idea had been to base the technical references in the book on the

popular LambdaCore distribution; but in the late spring of 1997, as we were

Chapter 6210

putting the final touches on the High Wired manuscript, we came to realize that it

might be helpful to have a special education-oriented version of LambdaCore to

go with the book. We knew from experience that the first task that faced a new

MOO administrator was to port and install popular educational tools such as

Ken Schweller's Classroom object, our own Moderated room, recording systems

and more. It seemed to us that to provide a special MOO core with all these tools

pre-installed would save new MOO administrators a lot of time and trouble as

well as help them focus more on the pedagogical aspects of their new site. Thus,

as part of the High Wired project we also wanted to provide a MOO software

package specifically designed for educational use. This software package was

eventually named the High Wired enCore, or simply enCore.

Building on Open Sources

As I have stated above, when we built Lingua MOO, we used the LambdaCore

software. This MUD software was designed with a built-in programming

language that allowed us to expand and adapt the system to a new set of

specifications for academic use to which I will return shortly. The fact that the

technology placed this powerful programming tool at our disposal was, and still

is, one of its major advantages. The other major advantage that MOO offered was

that its code was openly available to anyone who wanted to modify or change it.

So while keeping the core functions and compatibility with other MOOs based on

LambdaCore, we could easily expand and build in new functionality and remove

functions that we deemed unsuited in an academic setting. For these reasons, as

well as from a technical point of view, it was clear to us that MOO offered the

best and most flexible starting point for building the academic online

environment that we wanted.

Between Theory and Practice 211

The enCore MOO software project began in the summer of 1997 and is still

ongoing at the time of this writing (2003), with new versions and updates being

released as needed. In what follows, I will focus in more detail on the goals and

design objectives of this project.

High Wired enCore: An Educational MOO Core Distribution

In 1997 there were basically two MOO software packages that could be used as

foundations for building new MOOs. The first one, LambdaCore, was discussed

in the previous chapter. The other core package was JHCore, developed by Jay

Carlson, Ken Fox and others at a MOO called Jay’s House MOO. Both of these

packages can be described as very generic and to some extent bare-bones; yet it

was clear to us that if we wanted to encourage the adoption and use of MOOs in

educational settings, we had to provide a core package that was not only more

rich in the kind of features that educators wanted, but that also made it easy to

get started for non-technical people.

The primary design objective of the enCore project, as formulated in the

summer of 1997, was therefore to create a MOO software package that was:

• Designed specifically for educational use.

• Easy to set up and administer for “non-techie” educators.

• Built-in suite of popular educational MOO tools.

• Used an Open Source model of development to ensure that users have the

freedom to modify and adapt the software.

• Available to anyone free of charge.

Chapter 6212

By this time, LinguaMOO was already a mature, educational MOO system

with many new tools and enhancements, so it was evident that it would make a

good foundation for a new core distribution. As it turned out, however, instead

of extracting the new core from the Lingua database, we ended up using the then

latest LambdaCore distribution, which was 02-February-1997. During the

summer of 1997 we ported over most of the tools and features that we had added

to Lingua MOO, and we also begun soliciting contributions from other MOOs.

Back in 1997 the MOO world was still dominated by the traditional text-based

interface, but with the rapid rise of the World Wide Web and all the possibilities

for multi-media content that it opened up, we felt that it would be very useful to

have a nice interface to the WWW in addition to the traditional text-based

interface. At the time, one of the most advanced MOO web interfaces was a

system called BioGate, originally developed for BioMOO by Gustavo Glusman,

Eric Mercer, and others. The BioGate system was much more advanced than the

simple browse-only web interface that we had obtained from Collegetown in that

it enabled users to browse and interact in the same session. By this time the new

Java programming language, with its client side applet, was beginning to take

off, and a number of people were experimenting with ways to build telnet

applets that could be used in an integrated MOO web interface. When the

BioGate system was ported to Diversity University MOO (DU) sometime in 1995-

96, Eric Mercer and Alex Stewart, a.k.a. Richelieu, expanded it into a fully

integrated MOO web interface, where HTML was used to deliver static MOO

content while a Java telnet applet known as Cup-O MUD delivered dynamic real-

time content. We wanted our new educational MOO core to have as many state-

of-the art tools as possible, so we contacted the BioGate Partners (the group of

people behind the design and development of the system) and asked if we could

Between Theory and Practice 213

incorporate their web interface into our MOO core. Their answer was affirmative,

but there was one problem. Their license stipulated that while the system was

free for educational and non-commercial use, there was a $1000 license fee for

commercial users. On the one hand, this might not have been such an obstacle

since our target audience would be educational users. On the other hand, pairing

our MOO core distribution with the BioGate system would in effect tie us to their

non-commercial use license, since if we wanted to provide both systems as an

integrated package we couldn't have separate licenses for each part. We hadn't

really paid any attention to licensing before the BioGate issue came up, but it

demonstrated to us that we needed to decide on a license before we went ahead

with the release.

What's in a License?

Ask any software developer and they will tell you that licensing issues are some

of the least enjoyable aspects of software engineering. Nevertheless, a license of

some sort is a necessary component of any software release to protect the

developers' intellectual property rights and liabilities. So we started looking

around at what type of licenses other people used. Since we didn't have the

money or the desire to hire a lawyer to draw up an elaborate, specialized license

for the MOO core distribution, we looked with particular interest at the Free

Software Foundation's GNU General Purpose License and also the BSD license.

Both of these seemed to offer the legal framework that we sought, i.e., protection

from warranty claims resulting from the use of our software. Our initial idea was

to ensure that any not-for-profit entity could use our software in any way they

wanted, including the right to modify and redistribute their own versions of it.

As mentioned previously, the nature of MOO is such that each installation will

Chapter 6214

take on its own unique characteristics as users and administrators make changes

and additions to it. In this regard Free- and Open Source software licenses aptly

express the core philosophy of MOO development: collaboration and sharing. As

we studied the GNU GPL and the BSD license, it became clear to us that both of

them followed closely the tradition established by the original LambdaCore

releases where there were no restrictions placed upon usage and redistribution. If

someone took our work and made a profit from selling it, so what? While the

BSD license was certainly the more open-ended of the two, we felt that it failed to

protect one of the key things that we wanted our software to

promote—collaboration.

Both licenses protect the users' right to obtain, modify, and redistribute

software; but only the GPL also protects the developers themselves. Robert

Chassell, formerly of the Free Software Foundation, explains that in the GPL you

“have the freedom to do things, but also the freedom from other people taking

things away from you. It’s the freedom from that ensures that you reward the

good guys and not the bad guys” (Chassell “Interview”). By using the GPL, we

could prevent users from taking our code and adding their own proprietary

elements to it. Any works derived from our software would have to be licensed

under the same terms as the original software, which meant that changes and

modifications in one enCore MOO could freely be shared with other MOOs. In

other words, the GPL protected us from people who might otherwise want to

take advantage of our work without being willing to channel their own

contributions back to the community. Although we didn't grasp the full

significance of it at the time, the choice of the GNU GPL license was a major

milestone for the whole project. It provided a legal framework for our work and

also a philosophical foundation for the kind of community we wanted to foster.

Between Theory and Practice 215

enCore: The Early Days

The first beta version of enCore was released on the Internet on August 10, 1997.

Since the software was provided free of charge, we could not, for obvious

reasons, provide the kind of technical support that a commercial company could.

However, it was clear that despite our efforts to make the enCore system as

intuitive and easy to use as possible, users would inevitably encounter problems

and bugs. Among the first things we did following the release, therefore, was to

set up an email discussion list with the purpose of creating a virtual “help-desk”

where users could help one another.

Like so many other software projects, enCore evolved in a cyclical fashion. As

I have just mentioned, we started with an initial design and brainstorming phase

where the foundations of the system were laid out, and since we decided to build

on the core of Lingua, we had most of the features we wanted already in place.

Because of this we had the great advantage of being able to ship the first version

very quickly. The second and most important phase, however, was the circular

design, implement/re-design, re-implement phase. With the advent of the

Internet, software products can be sent to market with literally one keystroke.

Because you can reach your users easily, this means that they can also reach you.

The advantages of this are substantial. Not only can your product be spread and

tested among a wide group of users really fast (public beta testing), you can also

get unsolicited comments, feedback, and feature requests at a stage when the

software is still in development and at a time when it is still possible to actually

incorporate them into the design and implementation of the product. Thus,

during the whole enCore project, we’ve adopted an active beta-release program

that allows us to continually fix bugs and add new features while giving our

Chapter 6216

users frequent and timely updates of the software. The enCore mailing list has

been instrumental in providing us with valuable user feedback, and many of the

feature requests that have come across the list have subsequently been included

in the enCore distribution.

enCore exchange

The Open Source model of development means that anyone has the right to see a

program’s source code and the freedom to change and modify it as they wish.

Since the enCore MOO database is essentially a source code structure with no

compiled binaries, giving users access to the source is a natural thing. In fact, the

MOO system is set up to allow users to read source code by default. If you wish

to prevent them from doing so, you have to disable the read-flag for each of the

more than 2400 verbs (MOO programs) in the distribution. We knew that once

people started to download enCore and use it to set up their own MOOs, they

would want to start making modifications and additions to it. Some of these

modifications might be bug fixes that could benefit the whole user community.

Additions might include new features that MOO users elsewhere would also

want to use. Through postings on the enCore mailing list we encouraged sharing

as much as possible; and in order to facilitate this, we created a special section of

the enCore web site called the enCore exchange that was intended to be an

archive of MOO code that anyone could download and install on their own sites.

As a special incentive for sharing, we also let it be known that the best

contributions to the enCore exChange would be included in the enCore

distribution whenever we released new versions. We had great hopes for the new

code archive. This was during the heyday of text-based educational MOOs, and

new installations sprang up almost every week. As time went on, however, we

Between Theory and Practice 217

came to realize that it was much harder to get contributions from the outside

than we had anticipated. One reason for this was that whatever collaboration

there had been in the past increasingly became a victim of what seemed like a

beginning rivalry between installations and competition for users. Although

there was little or no monetary gain in operating a successful MOO with a large

user-base, it did give its administrators and host institution a certain reputation

or perhaps “cultural capital” within the academic world. Another, more

significant reason for the seemingly lax attitude toward inter-MOO collaboration,

however, was the fact that most of the new enCore MOO operators were not

programmers or even technical specialists. Most of them were in fact graduate

students or faculty members from the humanities and the social sciences. Most of

them ran vanilla installations with few or no core changes at all; and the few that

had actually made modifications often felt that what they had done was not

significant enough to contribute it back to the community. Although we did

receive a handful of unsolicited contributions, many of which made their way

into the enCore distribution, most of the code in the exchange archive was either

written or solicited by us. One example of code that we actively solicited during

this time was Amy Bruckman’s MacMOOSE utilities, which was a set of MOO

verbs and modifications that enabled users to take advantage of the advanced

editing features in her MacMOOSE MOO client program (Bruckman

“MacMOOSE”).

In retrospect, the enCore exChange was an interesting experiment because of

what it told us about the differences between trying to run an open source type

project in a humanities setting as opposed to doing it in the traditional computer

science world. The enCore exChange archive was up for a couple of years before

we finally decided to take it off-line in the spring of 1999.

Chapter 6218

From: "Jan Rune Holmevik" <jan.holmevik@hedb.uib.no>

Date: Mon, 31 May 1999 23:27:03 -0500

To: enCore list <encore@utdallas.edu>

Subject: enCore exChange Closing Its Doors

PUBLIC ANNOUNCEMENT

MAY 31, 1999

It's with regret that we announce today that the enCore exChange MOO

code archive will be closing its doors at midnight May 31, 1999. This

archive was established in 1997 to promote sharing and collaboration in

MOOs. See the original mission statement below.

enCore exChange: The enCore exChange is an archive of free MOO code

for sharing among MOO administrators, programmers and others. The

site is designed as a clearinghouse for MOO code that up to now has been

dispersed across the entire spectrum of MOOs. With enCore exChange we

aim to promote a sense of connection, a spirit of collaboration, and a

commitment to a pedagogical economy in which educational MOOs

advance the creativity and efficiency of teaching in a gift-exchange system

of programming.

Over the years we have only received a very small number of

contributions to the archive, and it is in light of this that we have decided

to cease operations. An initiative such as enCore exChange can only

Between Theory and Practice 219

succeed and work to everyone's benefit if people come together to support

it. Sadly, this has not been the case.

Regards,

Jan Rune Holmevik and Cynthia Haynes

enCore 2.0: Open Source Stage Two

After the final release of enCore version 1.0 in April of 1998 we turned our

attention to the predominant users of the MOO, the students, to see what we

could do to make the system easier to use and more appealing to them. Because

we had both been using Lingua MOO in our own teaching since 1995, we had a

pretty good idea about its shortcomings; to put it simply, the text-based

command line of the 1980s and early 90s did not seem particularly appealing or

user-friendly to the web-savvy students of the late 90s. It seemed clear to us that

something had to be done to “modernize” the MOO interface. The other thing we

found was that there were no textbooks that would do for students what High

Wired had done for MOO administrators and educators, namely, teach them how

to use, and make the most out of, the MOO as a learning environment. The

textbook problem subsequently led to a book we named MOOniversity. It was the

first of its kind, and it was designed to give a comprehensive overview of

educational MOOs as well as being a combination text, tutorial, and reference

book that could guide students through the world of MOO. We wanted to show

students how to use the dynamics of real situations to evoke authentic writing in

which collaborative and individual learning are enhanced through conversation,

research, real-time events, multimedia presentations, and other interactive

situations. The book was conceived of as a complement to standard writing texts

Chapter 6220

MOOniversity: A Student’s Guide to Online Learning Environments. Allyn &

Bacon/Longman, 2000.

Between Theory and Practice 221

with clear, useful instructions for writing online, as well as productive

assignments and discussion questions to involve students with the technology by

writing in real-time with real people. To coincide with the publication of

MOOniversity, we set about also to modernize the MOO interface, which turned

into the graphical user interface project Xpress that I’m going to discuss in more

detail here. From the beginning, enCore had had a simple web interface that

allowed for the incorporation of multi-media content such as images, movies,

and sound into the MOO experience. This system was very limited, however,

because you could only experience the value-added content while browsing the

MOO in non-interactive mode. We wanted to preserve this capability in the new

Xpress interface, but we also wanted it to do much more. In outline, our design

goals for Xpress were to create a system that would:

• Bring the many hidden power features of the MOO system such as mailing,

creating, and editing objects, extending the environment through building,

and programming, right to the surface and make them as simple and intuitive

to use as possible.

• Preserve and extend the ability to incorporate multi-media content directly

into the MOO experience and enhance it by making it accessible directly from

inside the real time MOO experience.

• Be platform-independent by being based on World Wide Web technologies

such as HTML, Java and Javascript where the Web browser would be the

primary software for accessing and using the system.

In enCore version 1.0 we had used a telnet applet by Ken Schweller called

“Surf and Turf.” This applet allowed users to connect to the MOO and view

Chapter 6222

Diversity University MOO. BioGate World Wide Web Interface.

graphical content in their web browser; but our experience with it had taught us

that students and other novice users often found it confusing and frustrating to

have to navigate through many open windows on their screen. In the BioGate

system the telnet applet, Cup-O MUD, was integrated right into the main client

screen and this made for a much more streamlined and less confusing

experience. We contacted Dr. Schweller to ask if we could have permission to

design a new applet based on his code, but he politely declined and told us that

he was still in the process of working on it and that he would release the source

code at a later time.

Once again we found ourselves looking at the BioGate system. As I have

already explained, it was clear that we could not incorporate it into enCore due

to licensing issues, so instead we began to study the source code to see if we

Between Theory and Practice 223

could reverse engineer a new system with the same basic functionality. One of

the main strengths of Free- and Open Source software is that you can read and

learn from other people’s code, and the BioGate code taught us a lot about how

to implement an httpd-type web server via MOO code. After a couple of hectic

weeks of coding in October of 1998, we had what amounted to a BioGate clone

up and running on our development site. It was very basic at that point since the

synchronous telnet aspect of it was not yet implemented. We could not go

forward with Ken Schweller’s Surf and Turf client since we didn’t have access to

the source, but we had learned about a new MOO telnet applet written by Sindre

Sørensen of the University of Bergen, Norway (UiB). The applet was called

MOOtcan and seemed to be the perfect fit for the new enCore web interface.

Sørensen was at the time affiliated with what was then called the CALLMOO

project (later named Lingo.uib), headed by professor Espen Aarseth and Carsten

Jopp, also of UiB. Professor Aarseth’s project was one of the first to adopt enCore

1.0, and its aim was to use MOO technology in foreign language learning.

Specifically, the goal was to create an online learning environment called

“Dreistadt” for the German Department at UiB. The project was funded by the

Norwegian Research Council and has been one of the most vibrant and creative

MOO development projects in the world. After only a brief discussion with

Professor Aarseth, it was clear that enCore and the CALLMOO project would

both stand to benefit from a closer collaboration; so, while Sørensen continued to

improve his MOOtcan applet, we set about to expand the capabilities of the new

enCore web interface which later became known as Xpress.

While the BioGate system provided an elegant solution to the integration of

MOO and Web, we realized that it had only tapped into a tiny part of what was

possible. Our design objectives involved bringing out and simplifying the

Chapter 6224

creative aspects of MOO, thus making it as easy as possible for users not only to

create new rooms and other objects, but also to access the built-in help, mail

systems, editors, and more. Another significant benefit of building a web-based

client was that it would be platform-independent by running inside a web

browser. With the appropriate browser plug-ins, users would be able to broaden

the application of MOO to any available web-based multimedia technology. In

other words, we could offer a totally new and rich MOO experience while still

maintaining compatibility with the traditional text-based system. As educators

teaching with MOO in labs, we also knew firsthand about the problems of

downloading and installing traditional MOO clients on a large number of

machines, not to mention the problems stemming from students trying to

download and install said clients on their home or office computers. By using the

web browser as the platform for our new MOO client, we could avoid most of

these problems because nearly every computer shipped since 1995 had some sort

of web browser already installed.

Work on the new Xpress client commenced in earnest in October of 1998, and

by January the following year we had the first working prototype ready. During

this time we worked closely with the CALLMOO project, and although it was not

a formalized collaboration both projects had fairly well defined areas of

responsibility. The first beta version of Xpress was a very simple system that only

had a few features completed, but it allowed us to test the overall design on a

select group of users in Lingua MOO and solicit their feedback. By April of 1999

we had a useable system with most of the features we wanted included, and on

April 15th we released the first beta version of enCore 2.0 with Xpress.

In keeping with the Open Source model of development, which says to

“release early and often,” we shipped several beta versions of the enCore that

Between Theory and Practice 225

enCore Xpress 2.0. The Xpress Graphical User Interface with MOOtcan (left)

spring, fixing bugs and adding new features. The first complete version of the

system to include the Xpress interface was released as version 2.0 on June 1, 1999.

By this time we had already noticed a considerable increase in traffic on the

enCore list due to new subscriptions and also correspondence from new MOO

administrators who wanted to try out the new enCore. Although the enCore

exChange project had failed to generate the kind sharing and collaboration that

we had hoped for, we had not given up on the basic premise. By then the ideas of

Free Software and Open Source were everywhere thanks in large part to the

success of Linux and the other free software technologies that I have discussed in

previous chapters. Also the renewed interest in MOO that the Xpress system was

generating encouraged us to try and achieve our goals via a different route,

namely, the enCore Open Source Project, which was formally launched in the fall

Chapter 6226

of 1999. For the purpose of this project we totally redesigned the enCore web site

and wrote a new set of instructions on how to contribute, in addition to a

“manifesto” which outlined the basic ideas and goals upon which the project was

founded (See Appendix A). The site was modeled after other similar Open

Source sites with specific sections for information, downloads, and updates. I will

return to a discussion of the experiences from the enCore Open Source project at

the end of this chapter, but will focus now on the Xpress MOO client.

Xpress Explained

In essence, Xpress is a web application that uses a combination of MOO, Java,

JavaScript, and HTML (XHTML in enCore 4) to create an integrated MOO client

that targets the web browser as its platform. The back-end of the Xpress system is

a simple web server implemented inside the MOO using the MOO programming

language. Whereas a typical web server such as Apache will fetch and return files

from the local file system, the Xpress web server will retrieve information about

objects in the MOO database. The web server is supported by a large number of

services, such as authentication, error handling, document layout routines and

more, also implemented using the MOO language. Java was used to program the

telnet applet that handles synchronous actions and events within the MOO.

JavaScript is used primarily for window management, while HTML is used for

on-the-fly mark-up of information. To understand how Xpress handles a typical

transaction between a user and the MOO, consider the following example.

When a user clicks on a link inside the MOO, or types a command to either

look at an object or move to a new room, the Xpress web server, internally

referred to as $httpd, will receive a request for information over the HTTP 1.0

protocol from the user’s browser in the form of a URL such as this one:

Between Theory and Practice 227

http://localhost:7000/62/. Once the request has been received, Xpress will first

attempt to determine what exactly the user has asked for. In this case it is object

#62 as specified in the URL. If this is a valid object, Xpress will then check to see

whether the user has permission to access that object. The authentication

procedure takes place in a separate verb (method) and returns a Boolean value,

true or false, which is then used to determine further action. If the user is logged

in and has permission to view the object, Xpress then calls a special verb on

object #62’s super class named _html. This verb automatically generates a web

page for the object with information stored in the MOO database. In this

particular case the system first adds an image, then the description of the room,

followed by a list of objects and exits in the room. Appropriate server response

headers are then added to the page before it is returned to the user’s browser and

displayed on his or her screen.

The front-end of the Xpress system is a graphical user interface (GUI) that

was designed to deliver rich multi-media content as well as enhance the access

to, and usability of, some of the MOO system’s more advanced features such as

mailing, object creation and editing, programming, system administration, and

more. In the default configuration the Java telnet applet (MOOtcan) occupies the

lower left area of the screen, also referred to as the chat space, while information

about rooms and other objects from the MOO database is rendered using

HTML/XHTML in the lower right portion of the screen. This area is referred to

as the web space. The chat and web spaces are integrated and aware of each

other’s state so that if one is updated, the other will be updated to reflect any

changes that occur. For example, if a user clicks on an exit link in the web space,

their character will be moved to the new location and the web space updated

with information about that new location. When this happens a message will

Chapter 6228

enCore Xpress 3.0. The main client screen.

appear in the chat space telling the user that they have been moved to a new

location. They can now engage in conversation with anyone who happens to be

located in the room they just entered. Similarly, if a user decides to type an exit

command in the chat space in order to move via the traditional command line

method, their web space will be automatically updated once they arrive at the

new location.

Icons are key elements in any Graphical User Interface, and for the release of

enCore 3.0 on April 15th, 2001 we handcrafted over 350 new high definition icons.

This was done not only to avoid licensing problems that might arise from the use

of downloadable pre-rendered icons, but also to give the system a new and

unique look. Since enCore 2.0 users had the ability to change the layout of their

client screen from the default vertical orientation to a horizontal orientation akin

to the layout used in BioGate, in version 3.0 we introduced themes that also

allowed them to change the basic look and feel of the interface.

Between Theory and Practice 229

The Xpress toolbar along the top of the main client screen contains widgets

for the main features that we wanted to highlight. In order to reduce complexity

and avoid confusion as much as possible, the toolbar is generated automatically

based on each user’s access privileges in the MOO. For example, a guest

character is not allowed to add to or modify the system in any way, so their

toolbar will have fewer options than the toolbar that a programmer or a wizard

will see. The primary function of the Xpress toolbar is to give users easy access to

the more advanced MOO features that I mentioned above. In the traditional text-

based command line interface we had found that most of these features were

under-utilized because most users simply didn’t know, or remember, the

commands needed to invoke them. Thus, we observed that the MOO was being

used a lot for chatting, class discussions, and teacher/student conferencing, but

not so much for creative activities such as building and programming. Even an

important resource such as the MOO’s built-in help system was hardly being

used because users either didn’t know about it or didn’t know how to access it. A

main goal for the Xpress client system, therefore, was to create an interface that

embraced these power features and provided easy to use graphical interfaces for

each of them.

With the Xpress help browser users can select the help topic they wish to

explore, and point and click their way through the comprehensive MOO help

database. A list of help topics is displayed to the right in the help browser

window. Clicking on one of these help topics will show them a list of key words

under that topic. When a user selects the key word they want by clicking on it,

the associated text will be displayed in the bottom right area of the help browser

window. One can also search for help by typing a key word in the search field in

the top area of the help browser window. Another way to learn more about

Chapter 6230

The Xpress help system.

The Xpress Navigator.

Between Theory and Practice 231

the functions and features available in the MOO is to take advantage of the

contextual help system. Many of the objects that users encounter as they wander

around the MOO have detailed help texts associated with them. In enCore

Xpress, a light bulb icon is used to indicate that further help is available. Clicking

on the light bulb icons will bring up help and information relevant to the object.

The Xpress Navigator is a special interface for some of the new features that

we added in enCore version 3.0. It gives the user access to a convenient

bookmark system that allows them to move quickly between various spaces in

the MOO, plus they have the option to add their own personal bookmarks. The

navigator also holds a notebook that allows users to take notes from classes,

meetings, etc. They may either save the notebook text on the MOO or download

it to their own computers via email. A special log feature was added to give users

a convenient way to record real-time interaction in the MOO such as meetings,

interviews, and so forth. The Virtual Assignment Server Environment (VASE) is

a complete online, MOO-based assignment system. With VASE, educators can

easily set up assignments for their students to work on online. Students complete

and hand in assignments online, making this an ideal distance learning tool

within the social learning space of the enCore MOO. VASE was designed and

written by Project Achieve of the University of Toronto, Canada.

The Xpress Who Browser shows a list of people currently connected to the

MOO. It shows how long users have been connected, how long it has been since

they were last active, and where they are in the MOO. One can click on people's

names to find out more about them, or join them by clicking on the room they are

in. Generic icons are used to denote different player classes, but users can also

use their own personalized icon, which will then be used system wide.

Chapter 6232

The Xpress Who Browser.

The Xpress Inventory Manager.

Between Theory and Practice 233

The Xpress Inventory Manager gives users an overview of objects that they

own. The interface also allows them freedom to manipulate their objects via point

and click. For example, they may access help and information about their objects,

they can pick up or drop certain objects, edit their objects, lock and unlock them,

recycle them, or if the object is a note, they may email it to themselves. The

Inventory Manager also shows users at a glance how much building quota they

have left. Active MOO builders will sooner or later use up their initial quota, and

they must then contact a MOO administrator in order to get more. To avoid

screen clutter, if a user owns more than a handful of objects, the list is broken

down into several parts. The newest objects will appear first, and one can easily

jump to older objects by selecting a new segment from the quick access menu,

which appears below the quota information. Certain objects cannot be viewed or

manipulated in Xpress. These objects are still listed in the Inventory Manager;

however, they have no links or icons associated with them and must be used via

the traditional chat space command line interface.

The MOO mail and news group system is a powerful feature that allows users

to send each other electronic mail and/or subscribe to MOO news groups. The

Xpress MOO mailer interface shown here was designed to make the system more

accessible to novice users. A user’s inbox, along with any news groups to which

he or she may be subscribed, appears in the leftmost area of the MOO mailer,

while any messages they have appear on the right. Clicking on a mailbox will

bring up the contents of that box in the right hand frame. Users can read any of

their messages by clicking on the subject links that appear. To compose a new

message a user clicks on the button named “Compose mail,” which then brings

up the MOO mail editor as shown above. In addition to each user’s personal

inbox, the MOO may also have a number of news groups that they can subscribe

Chapter 6234

The Xpress MOO Mailer.

The Xpress Object editor.

Between Theory and Practice 235

to. Available news groups will show up when users click the Mail List button in

the Xpress MOO Mailer. One can subscribe to, and unsubscribe from, mailing

lists simply by selecting and deselecting them from the set of available lists

shown.

The Xpress Object Editor enables users to create new objects via point and

click and also edit some of the most important properties on their objects. The

kind of properties that a user can edit with the Xpress Object Editor will vary

depending on which class of object they are working with, but here are three of

the interface-related properties common to all objects in an enCore MOO.

Multi-media Content: All objects can have external multimedia content

associated with them. This might be an image, an audio or video file, a Java or

Flash animation, and so forth. One may connect two such resources, audio and

visual, to an object. Audio content remains invisible and will play automatically

whenever someone looks at the object. Visible content is shown in the Xpress

web space. If the size of the display area does not fit the image or embedded

resource, one can change the height and width specifications. Leaving one or the

other blank results in the browser sizing the image based on the size given. For

embedded contents, such as Flash animations or Quicktime movies, both height

and width must be specified. Multi-media content requires users to have the

appropriate plug-ins installed in their browsers. For this reason, users are

encouraged to use only the most common file formats for their multi-media

content to ensure that people will see it without having to download and install

additional plug-ins. If the external resource is a web page, a link to it will be

added to the description of the object.

Chapter 6236

The Xpress Program Editor.

The Xpress MOO administration module.

Between Theory and Practice 237

Icon: Icons are used to make it easier for people to see what kind of objects

they are dealing with. If users don't want to use the default system icons, they

can use their own by providing a URL pointing to an external icon-file.

Appearance: Users can control how their objects look like by editing their

appearance. They may either choose from pre-defined options for font type, size

and color, link colors, background color or image, or they may opt to link to an

external cascading style sheet of their own making.

The Xpress Program Editor provides an easy and intuitive interface to

programming in the MOO environment. The MOO comes with a built-in

programming language that can be used in many creative ways, and the Xpress

Program Editor was designed to make it as accessible as possible. The Program

Editor lets users look at verbs and properties on objects, edit verb code and

property values, as well as manipulate various permissions and flags. To use the

Program Editor, users first specify the name or number of the object that they

want to work with in the input field labeled Object in the top Program Editor

menu. They can either type in the name of an object or an object number. Special

MOO variables such as 'me' and 'here' are recognized. Object numbers, however,

work system-wide. The Program Editor can also recognize special verb and

property references. If a user wants to edit an existing verb on an object, they can

type in the object name or number, followed by a colon and then type the verb

name (Example: coke:drink). The same syntax is used to reference properties,

except a period is used instead of a colon (Example: coke.flavors).

When a user clicks on the View button, the object they have specified will be

displayed in the bottom left part of the screen, and any verbs or properties on the

object are displayed on the right. To program a new verb, they click the button

New Verb, and the Editor opens the new verb ready for editing. If a user’s code

Chapter 6238

has errors in it, the MOO compiler will tell them what kind error was triggered

and where it occurred. To create a new property on the same object, they click the

button New Property, edit the property value, and click Save Property. To delete

existing verbs or properties, users select the item they want to delete from the list

of verbs and properties, and click the Delete button in the editor.

Objects, verbs and properties all have certain permission flags that can be set

in the Program Editor. For objects, the relevant flags are Read (R) and Fertile (F).

If the R-flag is checked, then the object is readable by anyone, but editable only

by the owner. If the F-flag is checked, then other people can use the object as a

blueprint for creating new objects.

For properties the permission flags are Read (R) and Change (C). Read works

in the same way as for objects, while the C-flag determines whether the property

can be modified on objects that inherit the property. If, for example, one wants to

create a property that should have the same value on all objects that inherit the

property, then the C-flag should remain unchecked to make it a constant.

For verbs, the permission flags are Read (R), Execute (X) and Debug (D). If the

R-flag is checked, then the verb code is readable by anyone. If the X-flag is

checked, then the verb may be called by another verb, and if the D-flag is

checked, then the MOO will print a trace back if the verb produces a runtime

error.

The Program Editor allows users to inspect all verbs and properties that are

readable by them (i.e., all that have the R-flag checked). This means that they can

look at readable verbs and properties on other people’s objects, but they will not

be able to modify them. However, looking at other people’s verb code, in

particular, is a good way to learn how to program in the MOO; so aspiring

programmers are encouraged to explore and learn as much as possible. The

Between Theory and Practice 239

Program Editor comes with Pavel Curtis’ LambdaMOO Programming Manual as

a reference for programmers.

While Xpress was originally designed to make the MOO easier for users, we

have also added GUI to some of the most common system administration tasks.

These include things like changing system settings, account creation and

management, and bookmark and generics management. Although MOO

administrators can now perform many common tasks via Xpress, they still need

to rely on the command line for more complex and less frequently used

operations.

enCore Xpress: MOO Redux

Due in large part to the Xpress system, MOOs have become more accessible and

easier to use. The point-and-click interface has unlocked the many powerful

features that make this technology different and unique. For these reasons, since

the release of enCore 2.0 with Xpress we have seen a genuine revival in the

interest in MOO technology. Based on downloads from our FTP site and general

traffic on the enCore mailing-list, we loosely estimate that in the period between

1999 and 2003 there were at least 250 large and small enCore MOOs in operation.

Combined these systems may have reached as many as 20.000 users worldwide.

EnCore MOOs have been used for many different purposes over the past few

years. From general purpose online learning and conferencing environments for

whole institutions, to discipline-specific applications across institutional and

national borders, to small purpose specific projects, enCore MOOs continue to

serve academic endeavors around the world. Appendix B lists some of the most

active and innovative enCore MOOs in operation between 1997 and 2003.

Chapter 6240

0

100

200

300

400

500

600

1997 1998 1999 2000 2001 2002

Posts on the enCore email list 1997-2002

Posts to the enCore administrator’s email list 1997-2002. The higher number of posts in

1999-2001 is an indication of increased activity related to the enCore version 2.0 and 3.0

releases. The reduced activity in 2002 is an indication that the system by this time had

become more mature and stable.

Conclusions

When we launched the enCore Open Source project in the fall of 1998 we had

great hopes that MOO users and administrators elsewhere would want to get

involved and contribute to development of the software. In retrospect, looking

back at the activities over the past few years, we must admit that the kind of

collaboration on system programming that we had originally hoped to foster via

the Open Source Project has largely failed to materialize. This is not to say that

big contributions have not occurred. Both the MOOtcan telnet applet from

CALLMOO/Lingo.uib and the Virtual Assignment Server Environment (VASE)

Between Theory and Practice 241

from Project Achieve at the University of Toronto, Canada represent major

contributions to enCore for which we are very grateful.

What we have seen instead, however, has been a fairly extensive collaboration

on aspects of what we may call system maintenance. Since we adopted an active

beta release program right from the start, many of our users have been able to

help find and fix bugs and other problems along the way. The enCore email list

has been instrumental in this regard. What has typically happened following a

release is that users elsewhere start to discover problems that we have not been

able to catch during our pre-release in-house test runs. Most of them will simply

report the problems on the list so that we can fix them, but quite a few have also

been able to provide us with patches to actually fix the problems they have

found. In quite a few instances we have also received new and improved

versions of code from other MOOs long after the original release date. In both

cases we have done our best to incorporate these contributions into the enCore

distribution as soon as possible.

Another aspect in which the user community has played an important role

has been as a supplier of ideas for how to improve existing features. There have

been a handful of feature requests over the years, but not to the extent that we

might have expected. But occasionally there are very useful new features and

resource archives initiated by enCore administrators. The enCore Documentation

project co-coordinated by Lennie Irvin of San Antonio College and Erin Karper of

Purdue University is another example of concrete, non-technical contributions

from the community. This is an independent project with which we were not

involved, yet because Irvin and Karper alerted the enCore list members to this

important resource, the enCore project as a whole has benefited from it.

Chapter 6242

There may be several reasons why the enCore Open Source Project has failed

to deliver on our original goals and instead has delivered in other significant

ways. One of the principal reasons, I believe, has been that our main user groups

have come from the humanities and the social sciences rather than computer

science. Most of our users did not become involved with enCore in order to

contribute to an Open Source project. Rather, they got involved because they

wanted to utilize the services that the enCore system provided. Consequently,

most of the enCore administrators over the years have not possessed the

programming skills and knowledge to actually contribute to the technical

development. Secondly, as Eric Raymond and others have pointed out, only a

handful of Open Source projects gain enough momentum and fame to actually

attract large number of programmers. Linux and some of the other successful

Open Source technologies that I have discussed in previous chapters are really

the exceptions rather than the rule. MOO and its programming language are

fairly obscure when compared to languages such as C and Java, which are the

typical tools in today’s open source community. Thus, programmers interested in

participating in open source development most likely become involved in more

highly profiled projects using tools with which they are more familiar.

A third reason why there haven’t been as many contributions to enCore as we

had hoped has to do with the nature of MOO itself. When a new MOO is first

established, it is basically a copy of the core distribution. As its administrators

start to modify and customize it, however, it will start to take on its own

characteristics. Unless the programmers take care and plan for their local changes

to be incorporated back into the main enCore distribution, as well as document

their modifications properly, it is often difficult to extract code from a production

MOO environment. Sometimes the changes that are made are so substantial and

Between Theory and Practice 243

localized that it is impractical to move them back into the main distribution.

Lingo.uib’s MOO, Dreistadt, is an example of this. Much of the Dreistadt core

was translated into German in order to use the system for its intended purpose.

Consequently, much of that work could not easily have been merged back into

enCore. Another related problem is that many of the programmers that have

worked on MOOs over the years have been students. When they graduate and

leave, the new staff have found it difficult to determine exactly what has been

done to the MOO unless proper documentation procedures were in place and

followed from the beginning.

Finally, the role of funding, or rather lack thereof, in volunteer-based projects

such as this often affects the level of participation. Throughout both the Lingua

MOO and enCore Open Source projects, we have built on, and benefited from,

the Open Source model of development; but we have not benefited directly from

grants or institutional funding. All the development work itself has been

conducted on a voluntary basis, and this means that as the project proceeds you

are more or less at the mercy of whoever decides to sign up. If no one is paid for

their time, you cannot delegate work in the same way as if your collaborators

were employed. The most you can do is to announce what needs to be done and

then hope somebody will come along and do it. If nobody volunteers, you either

have to do the work yourself, or not do it at all. This is a problem for most

projects that rely on volunteers. As I discussed in Chapter Three, even a large

and well-known project such as GNU had to hire programmers in order to get

certain tasks done. Fortunately, we have benefited indirectly from other funded

projects working with enCore technology. Lingo.uib’s MOOtcan applet is a good

example of this. Lingo.uib worked within the framework of a well-funded project

Chapter 6244

with wide institutional support, and thus they were able to hire programmers to

do the various jobs they needed done.

The enCore project has clearly demonstrated that Open Source methodologies

afford some truly remarkable opportunities for learning. By building on open

sources and existing technology, we were able to learn from those who went

before us. We did not have to “re-invent the wheel” in order to create a more

suitable program for our needs. Complete access to the MOO source code gave

us the opportunity to study how things were done so we could improve and

change what we wanted, and also add new features as we went along. MOO

technology is truly free in both senses of that word. First, it costs nothing to

acquire and very little to operate; thus, it is ideally suited to the needs of often

cash-strapped educational institutions. Secondly, and even more important

however, is the fact that users are free to change and modify it to suit their own

needs and specifications.

Another important lesson has been the significance of actual user experiences

and input on the design and implementation process. With most software

products, users typically have no influence over the design, which usually results

in a situation where they just have to make the best use they can of the software

as handed to them. In the Open Source model that we used for enCore, not only

has the design of the system been informed by our own teacher/user

experiences, we have also actively solicited comments and feedback from other

users in an attempt to make our software as useful and empowering as possible.

More than anything, the enCore project has shown us that we do not have to

settle for commercial products that either force us to work in certain ways or that

take away our ability and freedom to be creative and bend the technology to our

own needs. Through the Open Source model of development we, as educators in

Between Theory and Practice 245

the humanities, can forge our own technologies and make them work the way we

want.

Chapter 6246

7

Conclusions

en·core :a demand for repetition or reappearance made by an audience; also

:a reappearance or additional performance in response to such a

demand—Merriam-Webster OnLine

The word encore means repetition or reappearance in response to a demand. This

dissertation has concerned itself with two such encores: one, the popularization

of hacker methodologies in the 1980s and 90s; the other, the re-creation of

educational MOO technology in the shape of the enCore Xpress system. While

Open Source may be seen as an encore to Free Software and the hacker practices

of the 1960s, 70s, and 80s, and each Open Source program an encore to the one on

which it was based or inspired, enCore Xpress can be viewed as an encore to

educational MOO technology. Although neither of these encores were exact

repetitions of previous efforts, they were certainly reappearances in response to a

demand from the groups that employed them.

My dissertation began with one basic question in regard to ICT; how can we

as scholars and educators in the humanities become more actively involved in

the conceptualization and creation of our own technological future? If we believe

that we possess valuable knowledge and experience in regard to teaching and

Chapter 7248

research in our respective fields, then we ought to shift our academic mission to

include infusing the technologies we use with our knowledge and experience.

Through this project I have turned my initial question into three distinct

challenges and then enacted these challenges in an effort to demonstrate one way

in which we can enhance technology with our own unique knowledge and

experience. The three challenges that I outlined in Chapter One can be summed

up in the keywords use, study, and enact. These terms form the basis of my final

remarks since they have shaped the experiences and lessons of both the enCore

project itself as well as this dissertation.

Practice What You Preach

Change stems from experience, and experience stems from use. My involvement

with Lingua MOO from 1995 onward has taught me a great deal about teaching

with ICT. One lesson that I have learned is that we cannot just introduce new

technology in our classroom and expect to continue our teaching practices as

before. If we do that, we will miss many of the new and unique opportunities

that modern information and communication technologies can provide. On the

other hand, if we try too hard to bend our teaching practices to fit the mold of a

certain technology—if we let the limitations of the technology itself govern our

learning strategies—then we end up with a contrived and quite possibly counter-

productive learning environment. Sometimes we do come across learning

technologies that are perfect for our purposes; more often than not, however, we

make do with what is available.

Many of the technologies that are currently being used in learning institutions

around the world restrict involvement from third parties. They are proprietary

and closed to everyone except those who create and maintain them. As I see it,

Conclusions 249

we have only two options if we want to influence development of such

proprietary technologies: 1) we can contact the developers and give them

feedback on changes we want them to make; or 2) try to go into partnerships

with the developers so we can influence the technologies more directly from

within. Neither of these alternatives is optimal for our purposes. Trying to

initiate change through bug reports and feature requests is a gamble that leaves

us at the mercy of those who produce the technology. Trying to insert ourselves

into corporate structures such as a software engineering company is a lot easier

said than done. In reality, therefore, working with proprietary technologies is not

very helpful if our ambition is to institute change. For this reason it is my belief

that we ought to rid ourselves as much as possible of proprietary solutions in

favor of the many open source alternatives that now exist. These open

technologies invite us to play with them and learn from them. They empower us

on many levels, the most important of which is that they allow us to change

them.

The Promise of Open Source

Software is a strange thing. It is immaterial and abstract—it is the

conceptualization of how we solve problems in a digital world. Computers and

networks are material things, but they are nothing more than empty vessels until

we fill them with software. Understanding software is key to understanding the

information society in which we live. The purpose for studying software in the

context of this dissertation has been to learn about the methodologies and

practices that the hackers have developed in the creation of software.

In Chapter Two I discussed the emergence of software and how it was made

possible by the invention of the universal machine—the modern computer. Until

Chapter 7250

the computer, what we now think of as software, namely what makes a machine

do what it does, was encoded directly into the hardware itself. The universal

machine created a separation between the machine and its application space, and

this effectively gave birth to what we might call the modern notion of software.

Unlike the first digital computers of the 1940s and 50s, which were enormously

expensive, the software created for them was, by contrast, quite inexpensive.

Once the cost of actually writing it had been absorbed, duplicating the software

cost next to nothing since it was digital and electronic by nature. During this time

few considered software development to be a commercially sound enterprise by

itself—the money was in hardware and software was primarily a means to sell

more computers. Much of the research and development of software during this

time was academic in nature, and academics have always shared knowledge

among themselves. The Multics operating system project, which I discussed in

Chapter Three, is a good case in point. The knowledge, including the technical

concepts, that this project generated was later used in the creation of Unix, which

in turn gave the impetus to BSD, GNU, and ultimately, one might argue, Linux.

Thus, when the first hackers came along in the 1960s they entered a world in

which software, on the one hand, was not generally considered a commodity,

and on the other, something for which there was already precedence for sharing.

In Chapter Two I made the case that the invention of the personal computer

in the 1970s changed the value of software and, by extension, the way that it was

developed. New killer apps, such as computer games, VisiCalc, Aldus

PageMaker and more, coupled with cheaper, mass-produced machines led to the

formation of a new commercial PC software industry where source code became

a highly guarded business secret. Apple Computer, one of the pioneers in the PC

industry, built the whole company on the established practices of using software

Conclusions 251

to sell hardware. Microsoft, on the other hand, never entered the hardware

market at all—they focused all their energies and creative talent on software

alone. Today Apple Computer occupies less than 2.5% of the worldwide market

for personal computers. Microsoft controls almost all the rest. There are, of

course, a complex set of reasons why the two companies ultimately ended up on

such radically different paths, and I am not at all ascribing it just to their different

strategies in regard to software. Still, I do believe that the history of Apple and

Microsoft says a lot about the direction in the value and importance of software.

While a large scale commercialization of software was taking place during the

1970s and 80s, hackers continued to refine and extend the collaborative code-

sharing practices that had been established in academic software circles. Much of

this development took place in connection with the emerging computer networks

such as the ARPANET and therefore out of sight of the media and the general

public. In Chapter Two I traced the development of a handful of the important

communication technologies that helped make the Internet such a success. In

Chapter Three, I discussed the development of BSD, the operating system that

became such an important component of the Internet’s underlying infrastructure

itself. As I have pointed out, many of the programmers who were involved in

these developments can clearly be labeled as hackers, others employed the

collaborative hacker methodologies.

Richard Stallman, at one point dubbed “the last of the true hackers” (Levy

415), played a larger role than most in the history of hackers. When in 1983-84 he

set about to create the GNU project and later the Free Software Foundation, he

began a process of self-awareness among hackers. He gave them a cause to rally

around—the creation of a new operating system free of proprietary

restrictions—and he gave them an ideological framework—Free Software—to

Chapter 7252

which they could relate their identity as hackers. As mentioned in Chapter Four,

Eric Raymond points out that Stallman’s project was a moral crusade. He wanted

to strike back at the commercialization of software, the disempowerment of

users, and the restrictions on freedom that went along with it. From a historical

perspective we might say that Stallman began molding the individualistic

hackers into a self-conscious movement.

When Linus Torvalds came along and created Linux in the 1990s, the

emerging hacker movement received a major boost both in numbers and in

reputation. The remarkable media attention that the GNU/Linux operating

system received in the latter part of the decade made it a perfect showcase for the

hackers and their collaborative software development methodologies, and many

within the movement were eager to spread their gospel to business and industry,

now completely dominated by proprietary practices and solutions. Eric

Raymond said, “We knew we had a better way to do things in our software

designs and operating systems and the way that we shared work with each other.

But we couldn't get anybody to listen” (Raymond “Interview”). One reason, they

thought, why nobody in industry would listen had to do with Richard Stallman’s

ideology of Free Software. In response, they created the new notion of Open

Source as a more pragmatic model that incorporated the basic methods and

practices of Free Software, but was devoid of its additional ideological baggage.

The creation of Open Source in 1998 was also a response to a growing

diversification within the movement. While many continued to join in order to

further the ideology of Free Software, others simply wanted to become involved

with the hacker methods and practices at a purely practical level. Today, the

hackers themselves talk about two separate movements, the Free Software

movement and the Open Source movement. I believe that these are not

Conclusions 253

necessarily different movements, but rather political wings within the overall

hacker movement. In my dissertation I have used Open Source rather than Free

Software as a label for the collaborative model of software development that I

have employed.

Unlike proprietary systems, which we are typically not allowed to change,

Open Source does not force us to reinvent the wheel in order to create better

systems. In fact, hacker practices suggest the exact opposite. Not only should we

study and emulate the way hackers learn what they learn from each other, we

should allow their passion for learning to encourage us to learn about systems by

studying their source code and the structures into which they are built. Once we

have acquired an understanding of what a system does and how it works, it

further encourages us to play with it and modify it bit by bit until we have

changed it the way we want. In the Jargon File, Eric S. Raymond defines hacking

as “an appropriate application of ingenuity.” Open Source technologies invite us

to become hackers by applying our own ingenuity toward change. This is

empowerment at the highest level. We are invited to learn from those who came

before us, and to add our own ingenuity and solutions into the mix in a great

collaborative and evolutionary process.

Open Source also represents a democratization of technological development.

On the one hand it levels the playing field by allowing us, as scholars and

educators in the humanities, to become involved in the creation of technology at

levels that scale with our own technological expertise. We do not have to hold a

Ph.D. in computer science to contribute productively. Sometimes we may

accomplish our goals just by tinkering with and modifying small parts of a

system, other times we may have to make more substantial changes. In any

event, the freedom to change a system hinges only on our own technical

Chapter 7254

capabilities and our motivation to learn the necessary programming skills. On

the other hand, the democratization also speaks to the use of technology and the

important freedoms granted to us in this regard. While commercial shrink-wrap

licenses and other proprietary licensing schemes grant creators of technology

power over users by placing restrictions on usage and by keeping the source

code secret, licenses that conform to the Open Source Definition, such as the

GNU General Purpose License and the BSD license, do exactly the opposite.

There is no doubt in my mind that Open Source holds a great promise that we

have only just begun to tap into. Having said that, I must rush to add that we

should not forget that it is easy to get carried away in the euphoria that has

accompanied the present-day Open Source encores to the earlier hacker

performances. Contrary to what some of the most ardent Open Source

evangelists like to claim, and as I have pointed out in Chapter Four, even in the

computer science and engineering fields Open Source has not proved to be a

panacea for everything that ails current dominant practices. Thus, it would be

imprudent to rush to the conclusion that Open Source is going to be the one and

only answer to the challenges that I have outlined for the humanities. Before we

can begin to draw any conclusions in this regard we must first conduct

experiments where we apply Open Source methodologies to actual problems and

challenges in the humanities. This is precisely what I have done with the enCore

Open Source project.

Lessons From the enCore Open Source Project

In Chapter Four I discussed Eric Raymond’s essay, “The Cathedral and the

Bazaar,” and it might be helpful at this point to relate our experiences from the

enCore Open Source project to some of his key observations from that article.

Conclusions 255

When we first started our work back in 1995, Raymond’s article was still two

years off and the Bazaar model as such was therefore unknown to us. In

hindsight, however, it is evident that we employed many of the same methods

and strategies that he describes as key elements to a successful Open Source

project. For example, Raymond asserts that “every good work of software starts

by scratching a developer's personal itch,” and that, “to solve an interesting

problem, start by finding a problem that is interesting to you.” As I explained in

Chapter Six, this was exactly how the enCore Open Source project started.

Between 1995 and 1997, Cynthia Haynes and I identified a number of issues with

MOO technology and its applicability to teaching and learning, and based on

these observations we formulated several enhancements and new features that

we wanted to implement. Although never explicitly cast as Open Source, MOO

technology had always been open and free for anyone to use and modify. Again,

we found ourselves doing precisely what Raymond describes as the typical

hacker’s approach to software engineering: “Good programmers know what to

write. Great ones know what to rewrite (and reuse).” As an experiment with

Open Source methods in a humanities environment and also in an attempt to

garner more interest and participation in the enCore development efforts, the

Open Source project was then created in the fall of 1998.

Looking at the formidable success of Linux, and the general hoopla

surrounding Open Source at the time, our initial hopes were somewhat similar to

those of Netscape—that going Open Source would automatically lead to an

increased number of outside volunteers. As I discussed in Chapter Six, these

hopes largely failed to materialize, and in retrospect we might say that they were

overly optimistic. What we, and many other small Open Source projects, have

learned is that contrary to popular belief, most such projects do not consist of

Chapter 7256

hundreds or thousands of programmers. Most of them are, in fact, made up of

relatively small numbers of core developers. Many Open Source projects may

seem huge on the surface due to their success in the market place. However, the

actual numbers of core programmers are not nearly as big as we might think.

A further explanation as to why the enCore project failed to attract more

outside programmers, I think, must be attributed to MOO technology itself being

rather obscure as compared to better-known systems and programming

languages. Given the choice between joining a project that used C, Java, PHP or

some other well-known development tools, and ours, which used MOO

primarily, most prospective programmers would probably look elsewhere.

Finally, I believe that we failed to attract much contribution of code because

most of the people who used enCore to start new MOOs were primarily

interested in it from a pedagogical standpoint. Very few of them had any

programming experience, and thus they may have felt at a disadvantage when it

came to contributing technically. Part of the problem with participation that I

have just mentioned stems, of course, from the not too surprising lack of

programming expertise in the humanities. This, however, is one issue that

Humanistic Informatics as an academic field is perfectly situated to help resolve.

Had we conducted the enCore experiment five or ten years hence, the results in

terms of programmer participation may well have been more encouraging.

The fact that the enCore system did become a reality and has, over the years,

attracted more users than we have been able to track, speaks to a different level

of participation that, in hindsight, is an equally important lesson. In the

“Cathedral and the Bazaar,” Raymond advised that “if you treat your beta-testers

as if they're your most valuable resource, they will respond by becoming your

most valuable resource.” Using an Open Source model of development enabled

Conclusions 257

us to incorporate our users directly into a rapid and efficient maintenance

scheme. From the project’s beginning we had an email discussion list that served

as a direct link between our users and us. The list was intended as a virtual help

desk, but as the project progressed it also became an important channel for bug

reports and feature requests. This is something that proved immensely beneficial

both from a user and a developer standpoint. Since we had a large pool of active

and interested users, following Raymond’s observation of releasing early and

often was the natural thing to do. From a user perspective it meant that they

became actively involved in the evolution of the system and were able to

influence its development in very concrete ways. From a developer point of view

it meant that we were able to find and solve bugs more easily and release new

updates very quickly. It is therefore correct to say that the enCore project has

been a collaborative exercise although in a different manner than we had

originally anticipated.

The results of this collective effort have unfolded somewhat like what one

would imagine goes on before and during an expedition—planning, training,

testing, mapping, designing, equipping, and trekking. But no expedition

succeeds without the participation of a team of explorers, each skilled in different

ways, each motivated as much by the passion for the trek as by the remoteness of

the destination. Thus the enCore Portfolio (Appendix B) reads like the map of a

new world, with the names of members of this expedition marking the new

routes to new regions, writing the journals and logging everything from the

pinnacle to the mundane. So while I could not have anticipated the outgrowth of

our collective expedition to be so vast, I remain continually gratified that enCore

has pushed the edges of this map with each launch of a new enCore MOO, each

research publication, each conference lecture, and each student encountering an

Chapter 7258

enCore in the making. It is therefore also correct to say that beyond those users

participating on the email discussion list, other users of enCore MOOs, such as

teachers, students, deans, department chairs, professional association staff, and

writers of all kinds of writing contributed equally to the wellspring that became

the open pool of this Open Source.

The lessons do not end here, however. What inspired me in the hacker

movement inspired not only the creation of enCore, it has also inspired a ‘hacker

pedagogy’ modeled from their passion for learning and sharing the knowledge

gained. This new direction of humanities research suggests, as Haynes’

forthcoming book Beta Rhetoric attests, that the intersection of humanities and

technology is no longer merely the point where two linear and vertical

crossroads meet. Hacker pedagogy is omni-directional—going in all directions at

once. While Humanistic Informatics emphasizes what should be learned, hacker

pedagogy emphasizes how it should be taught. Lessons learned become lessons

in how to teach—how to challenge and change.

A Final Challenge

I would like to end here with one final challenge. While the programming and

software development issues that I have discussed on the preceding pages may

have been foreign territory to most scholars and educators in the humanities, the

study of Open Source can also teach us about activities that are much closer to

home, namely writing and publication, which is every humanities scholar’s

trade.

Hackers not only popularized the Open Source model of software

development, they have also helped inspire and pioneer a new collaborative

authoring and publishing scheme for traditional texts such as this. The

Conclusions 259

counterpart to Open Source is the Open Content, and among hackers, sharing

documentation of all sorts has been an established practice for as long as sharing

of source code itself has existed. In 1998, David A. Wiley, then a graduate student

at Brigham Young University in Provo, Utah, observed some of the amazing

results that had come from collaborative Open Source practices in the software

world. He wanted to see if similar results could be achieved in traditional

academic research and publishing. To this end he formed a project named

OpenContent and created a new Open Source-type license specifically designed

to grant readers of traditional texts the same freedoms as users of Open Source

software, namely the rights to use, copy, modify and redistribute. The new

license was named the Open Publication License, or OPL for short (see Appendix

C).

The OPL not only protects readers from rigid copyright laws, it also has

several features designed to protect authors. For example, the license stipulates

that works derived from an original text must clearly be labeled as such.

Modifications to a text must be identified and so must the person who made

them. The original author and publisher must be acknowledged on all derivative

works, and may not be used to endorse the derivative works unless they have

given their explicit permission. As a further safeguard, authors may opt to

invoke two additional options, which are not part of the default license

configuration. The first option stipulates that redistribution of substantially

modified versions is not permissible. By invoking this option the author can

protect herself from “Reader’s Digest” type condensed versions of her work

being republished by others. The second option prohibits third parties from

republishing the work or works derived from it in standard paper book format.

Chapter 7260

By invoking this option, the author can give print publishers the exclusive right

to publish her work in traditional print media.

While the OPL is more restrictive than most Open Source software

licenses—and this includes the Free Software Foundation’s own Free

Documentation License—it does represent a fair balance between the reader’s right

to use, copy, modify, and redistribute texts, and the author’s need to receive

credit for her work, protection of her name and professional reputation, and a

chance to obtain publishing contracts with traditional print based publishers. In

an academic world where print publishers still reign supreme, and tenure and

promotion hinges on traditional means of publication and professional

recognition, the Open Content is a bold proposition that challenges us to take a

giant leap of faith.

The historical analyses of this dissertation have shown how Open Source in

the software world has taught us many important lessons about the value of

open and free information and the incredible achievements that can come from it.

My own experiences from the enCore Open Source project reaffirm these lessons,

and like David A. Wiley and many, many others, I firmly believe that they have

also a lot to teach us about our own research and publishing practices in the

humanities. The final challenge, therefore, is that we take this leap of faith. It is

much too early to say what the application of open-source principles in academic

research and publishing may lead to. Only time will answer that question. One

thing we can be sure of is that the traditional rigid structures, with their

copyright and intellectual property laws, will resist change every step of the way.

Yet, if we believe there is a better way, we need to challenge these very structures

that support the current state of affairs. I have always believed that you should

practice what you preach, and that is why I am making my dissertation available

Conclusions 261

under the Open Publication License—maybe one day somebody will turn this

“source code” into an encore.

Chapter 7262

Appendices

A

The enCore Manifesto

What is enCore?

enCore is a powerful online multi-user environment specifically designed for

educational applications. It combines unparalleled ease of use and contemporary

functionality through open standard Internet technologies and the technological

power and flexibility of the MOO system (Multi-User Domain Object-Oriented).

enCore is Open Source Software available at no cost. It is licensed under the Free

Software Foundation's GNU GPL license. Open Source Software is freedom and

empowerment!

Commitment to Education

enCore's educational mission is to provide educators with tools they can use to

enhance their students’ learning. The enCore team has a lot of teaching

experience, which went into the design, and development of the system, and we

always welcome suggestions and ideas from educators on how to improve

enCore and add new useful features. Enhancing education through online

environments!

Appendix A266

Commitment to User Empowerment

enCore was designed specifically to empower administrators and users alike to

make the most out of online learning. Two principal goals constitute the

foundation of the enCore project. 1) Make it easy for educators to set up and run

educational MOOs. 2) Make it as easy and convenient as possible for users to

access and utilize the MOO technology. Give users the power to harness

technology!

Commitment to the User

enCore's graphical user interface (GUI), Xpress, allows for great flexibility in the

way users view and experience the MOO environment. Users who don't wish to

use Xpress can use the command line interface either via Telnet, or a host of other

specialized client programs. User controlled look and feel!

Commitment to Free, Open, and Flexible Solutions

enCore was built with standard internet technologies MOO, HTML, Java and

Javascript. Users can easily access the system with gratis web browsers on all

operating systems and platforms where such browsers are available. There is no

need for special purpose client programs to use an enCore MOO. Administrators

of enCore-based MOOs can easily adapt the enCore database to their specific

needs and purposes. Embracing Internet standards and open solutions!

Commitment to Portability

enCore was designed to run on the standard LambdaMOO server. No additional

patches are necessary for basic functionality. The enCore database is backwards

The enCore Manifesto 267

compatible with LambdaMOO without any proprietary core components. Stable

and portable technology!

Commercial Use

enCore is open to commercial use under the terms specified in the GNU GPL

license.

Jan Rune Holmevik and Cynthia Haynes

November 1998

Appendix A268

B

enCore Portfolio

This appendix is a portfolio of enCore projects and enCore-related research,

recognition, and resources between 1997 and 2003. It is intended as a showcase of

the scope of the enCore outgrowth into multiple and diverse projects conducted

by a wide range of individuals and institutions. It includes: 1) the official enCore

online resources, including website and discussion list addresses, the list

archives, and the MOOniversity textbook’s official companion website address

(site created by the author); 2) a sample list of encore MOOs (includes only

currently operating MOOs as of July 2003); 3) a sample of third-party research

and development grants funding enCore projects around the world; 4) a sample

of third-party publications based on primary research utilizing enCore MOOs; 5)

various awards and media recognition; 6) the author’s Visiting Scholar

appointments, invited talks, and enCore consultant work (MOO development

and staff training).

enCore online resources

• enCore software distribution website:http://lingua.utdallas.edu/encore/

• enCore email discussion list: encore@utdallas.edu

Appendix B270

• enCore email list archives: http://listar.udallas.edu/archives/encore/

(1997-present)

• enCore developers email discussion list: encore-dev@utdallas.edu

• MOOniversity companion website: http://www.abacon.com/holmevik/

Sample list of enCore MOOs

MOO Name: Lingua MOO

URL: http://lingua.utdallas.edu:7000

Location: University of Texas at Dallas

Purpose: Multipurpose educational, teaching, research

enCore version: 4.0 Beta

Contact: Jan Holmevik and Cynthia Haynes

MOO Name: MOOssiggang

URL: http://iberia.vassar.edu:7000

Location: Vassar College

Purpose: Compter-assisted Language Learning (German)

enCore version:

Contact: Jeffrey Schneider and Silke von der Emde

MOO Name: Dreistadt MOO

URL: http://cmc.uib.no:7001

Location: University of Bergen, Norway

Purpose: Compter-assisted Language Learning (German)

enCore version: 2.0.6

Contact: Daniel Jung

enCore Portfolio 271

MOO Name: MOOlin Rouge

URL: http://cmc.uib.no:9000

Location: University of Bergen, Norway

Purpose: Compter-assisted Language Learning (French)

enCore version: 2.0.6

Contact: Daniel Jung

MOO Name: CMC MOO

URL: http://lingo.uib.no:8000/

Location: University of Bergen, Norway

Purpose: Research and development and The Midsummer Night's Dream project

(Norwegian)

enCore version: 3.2

Contact: Carsten Jopp

MOO Name: OldPueblo MOO

URL: http://oldpueblomoo.arizona.edu:7000/

Location: University of Arizona

Purpose:Multipurpose educational and community

enCore version: 3.0

Contact: Jean Kreis

MOO Name: Villa Diodati (Romantic Circles MOO)

URL: http://www.rc.umd.edu:7000/

Location: University of Maryland

Appendix B272

Purpose: Multipurpose educational

enCore version: 3.3.2

Contact: Steve Jones

MOO Name: NCTE MOO

URL: http://www.interversity.org:7000

Location: National Council of Teachers of English

Purpose: Multipurpose professional and educational

enCore version: 2.0.2

Contact: Eric Crump

MOO Name: LC_MOO (Learning Communities MOO)

URL: http://ispg.csu.edu.au:8800/

Location: Charles Sturt University, Wagga Wagga, NSW, Australia

Purpose: Multipurpose professional and educational

enCore version: 2.0.4

Contact: Ken Eustace

MOO Name: K9MOO

URL: http://ispg.csu.edu.au:9000/

Location: Charles Sturt University, Wagga Wagga, NSW, Australia

Purpose: Experimental canine campus (MOO R&D)

enCore version: 2.0.4

Contact: Ken Eustace

MOO Name: GalileoWorld (GMOO)

enCore Portfolio 273

URL: http://ispg.csu.edu.au:51800/

Location: Charles Sturt University, Wagga Wagga, NSW, Australia

Purpose: Student project to build a galactic centre for extrasolar planets research

enCore version: 2.1.1

Contact: Ken Eustace

MOO Name: SKYMOOn

URL: http://eworks.engl.uic.edu:7000

Location: University of Illinois-Chicago

Purpose: Multipurpose educational/writing center

enCore version: 3.2

Contact: ico@uic.edu

MOO Name: MATIES MOO

URL: http://moo.sun.ac.za:7000/

Location: University of Stellenbosch, Stellenbosch, South Africa

Purpose: Multipurpose educational/Library services

enCore version:

Contact: John Dovey

MOO Name: Pro-Noun MOO

URL: http://linnell.english.purdue.edu:7000

Location: Purdue University

Purpose: Virtual Writing Environment

enCore version: 3.3.3

Contact: Erin Karper

Appendix B274

MOO Name: ATHEMOO

URL: http://moo.hawaii.edu:7000

Location: University of Hawaii

Purpose: Theater and theater education

enCore version: 2.0.6

Contact: Juli Burk

MOO Name: NorthWoods MOO

URL: http://www.hu.mtu.edu:8000/

Location: Michigan Tech University

Purpose: Multipurpose educational

enCore version: 2.0.3

Contact: Michael Moore

MOO Name: Texas Tech English Dept MOO

URL: http://moo.engl.ttu.edu:7000/

Location: Texas Tech University

Purpose: Writing classes

enCore version:

Contact: Locke Carter

MOO Name: HowellHenry Land

URL: http://www.ehhcl.net:8889/

Location: London, England

Purpose: HHCL/Red Cell Advertising corporation MOO website for clients/staff

enCore Portfolio 275

enCore version: 2.0 + corporate layer

Contact: Darrell Berry

MOO Name: AlaMOO

URL: http://ranger.accd.edu:7000

Location: San Antonio and Alamo Community College, San Antonio,TX

Purpose: Educational/Community

enCore version: 3.3.2

Contact: Lennie Irvin

MOO Name: Nouspace

URL: http://www.eaze.net:7000/

Location: Dallas, TX

Purpose: Multipurpose educational and professional

enCore version: 3.3.3

Contact: Dene Grigar

MOO Name: BC-MOO

URL: http://www.bridgewater.edu:7000

Location: Bridgewater College, Virginia

Purpose: Educational

enCore version: 3.3.2

Contact: Richard Bowman

MOO Name: PoeMOO

URL: http://moo.mmedu.net:8000/

Appendix B276

Location: Stockholm University (Multimedia Pedagogik)

Purpose: Poetry/Literary (Swedish)

enCore version: 2.0.3

Contact: Claudijo Borovic

MOO Name: GNA MOO

URL: http://www.gnacademy.org:7000/

Location: Austin, TX

Purpose: Globewide Network Academy Virtual Offices

enCore version: 3.3.2

Contact: Joseph Wang

MOO Name: The SilverSea MOO

URL: http://www.cwrl.utexas.edu:9000/

Location: University of Texas at Austin

Purpose: CWRL (Computers, Writing, Research Lab)

enCore version: 3.3.2

Contact: Peg Syverson

MOO Name: Freiraum MOO

URL: http://freiraum.philo.at:7000/

Location: Vienna, Austria

Purpose: Project on Friedrich Nietzsche's Also Sprach Zarathustra (German)

enCore version: 3.3.2

Contact: Herbert Hrachovec

enCore Portfolio 277

MOO Name: Groupe ESC Pau MOO

URL: http://moo.esc-pau.fr:7000/

Location: Pau, France

Purpose: Educational/business (French)

enCore version:

Contact: William Painter

MOO Name: EE-MOO

URL: http://ee-moo.ethz.ch

Location: Zurich, Switzerland

Purpose: Swiss Federal Institute of Technology Virtual offices

enCore version:

Contact: Tobias Oetiker

MOO Name: PROXY

URL: http://proxy.arts.uci.edu/index.html

Location: University of California-Irvine

Purpose: Experimental MOO+Proxy layer designed as critical theory/practice in

the media arts

enCore version: 1.1.1

Contact: Robert Nideffer

MOO Name: AcadeMOO

URL: http://academoo.cl.msu.edu:8000/

Location: Michigan State University

Purpose: Educational/Academic Scholars Program

Appendix B278

enCore version: 3.3.2

Contact: Tess Tavormina

MOO Name: FatecMOO

URL: http://www.fatecid.com.br:7000/

Location: Brazil

Purpose: FatecMOO is both Social and Educational, emphasis in EFL

(English as a Foreign Language)

enCore version: 3.3.3

Contact: Van Souza

MOO Name: U-MOO

URL: http://umoo.uncg.edu/

Location: University of North Carolina-Greensboro

Purpose: Educational

enCore version: 3.2

Contact: Bob King

MOO Name: ASMOO

URL: http://asmoo.ipfw.edu:7000/

Location: Indiana Univ/Purdue Univ-Ft.Wayne

Purpose: Educational/Academic arts & sciences academy

enCore version: 3.2

Contact: Deb Sewards

MOO Name: G2/Lost Cities MOO

enCore Portfolio 279

URL: http://kubrick.cdes.qut.edu.au:7000/

Location: Queensland Univ. of Technology, Australia

Purpose: Communication design technology studies

enCore version: 3.3.3

Contact: truna

MOO Name: World of Diversity MOO

URL: http://diversity.ds.psu.edu:7000/

Location: The Pennsylvania State University--DuBois

Purpose: Virtual Community created to promote diversity and encourage

collaboration

enCore version: 3.2

Contact: Deborah Gill

MOO Name: TaiMOO

URL: http://TaiMOO.ntjcpa.edu.tw:7000/

Location: National Taiwan Junior College of Performing Arts, Taipei, Taiwan

Purpose: Education and English learning

enCore version: 3.3.3

Contact: Cheng-chao Su

MOO Name: JurMOO

URL: http://moo1.iig.uni-freiburg.de:7000/

Location: Freiburg, Germany

Purpose: Computer & Law teaching in a university project

enCore version: 3.2

Appendix B280

Contact: Frank Roehr

MOO Name: enCore Italy MOO

URL: http://work.economia.unibo.it:7000

Location: University of Bologna - Italy

Purpose: Educational/Academic

enCore version: 3.3.3

Contact: Antonio Roversi

MOO Name: CLCS Campus MOO

URL: http://kontakt.tcd.ie:7000

Location: Trinity College Dublin, Ireland

Purpose: Tandem language learning partnerships involving English, German,

French, Italian. CALL research and development (currently: Bilingual Tandem

Analyzer)

enCore version: 3.2

Contact: Klaus Schwienhorst

MOO Name: CWRU MOO

URL: http://cwrumoo.cwru.edu:7000/

Location: Case Western Reserve University, Ohio

Purpose: General purpose educational

enCore version: 3.3.3

Contact: Guibourc

MOO Name: Seminar MOO (formerly Collegetown MOO)

enCore Portfolio 281

URL: http://147.92.13.7:7000/

Location: Buena Vista College, Storm Lake, Iowa

Purpose: Multi-purpose educational

enCore version: 3.2

Contact: Ken Schweller

MOO Name: Ponte Italiano MOO

URL: http://www.italiano.no/

Location: University of Bergen, Norway

Purpose: Italian language learning MOO

enCore version:

Contact: Daniel Jung

MOO Name: Story MOO

URL: http://diac.it-c.dk:7000

Location: IT University of Copenhagen, Denmark

Purpose: PhD project; narrative and creative writing

enCore version: 2.1.1

Contact: Lisbeth Klastrup

MOO Name: TecfaMOO

URL: http://tecfamoo.unige.ch:7000

Location: University of Geneva, Switzerland

Purpose: General purpose educational

enCore version: 3.2

Contact: Daniel Schneider

Appendix B282

MOO: igMOO

URL: http://hosting.uaa.alaska.edu/jeffwhite/classes/englishonline/

Location: University of Alaska-Anchorage

Purpose: General purpose educational

enCore version:

Contact: Jeff White

MOO: OakMOO

URL: http://en071.chss.iup.edu

Location: Indiana University of Pennsylvania

Purpose: English writing instruction.

enCore version: 3.2

Contact: Rob Koch

MOO: DartMOO

URL: http://dartmoo.dartmouth.edu:7000

Location: Dartmouth College

Purpose: General purpose educational

enCore version:

Contact: Mark O’Neil

MOO: schmooze MOO

URL: http://schmooze.hunter.cuny.edu:9000

Location: Hunter College, City University of New York

Purpose: ESL/EFL and general purpose educational

enCore Portfolio 283

enCore version: 1.0

Contact: Jon Wanderer

MOO: MiamiMOO

URL: http://moo.muohio.edu:7000

Location: Miami University, Oxford, Ohio

Purpose: General purpose educational

enCore version: 3.3.3

Contact: Laura Mandell

Sample of research and development grants funding enCore-based projects

• Charles Sturt University, Wagga Wagga, Australia. “Electronic Learning

Communities.” Principle researcher, Ken Eustace. Information Technology

and Teacher Librarianship staff of the Faculty of Science and Agriculture.

(http://farrer.riv.csu.edu.au/moo/jv/) Purpose: Development of three

enCore-based MOOs.

• Lingo Project, University of Bergen, Norway. “Lingo.uib.” Principle

researcher: Carsten Jopp. Department of Humanistic Informatics.

(http://cmc.uib.no/lingo/styret/sluttrapport/) Purpose: Develop

German Language MOO (Dreistadt) in Norway for teaching German as a

second language to Norwegian students. Funding for this project has

totaled more than 4.5 mill. Norwegian Kroner.

• Trinity College Dublin. “CLCS MOO.” Principle researchers: Klaus

Schwienhorst and Alexandre Borgia. CLCS Department. Grant for

development of Bilingual Tandem Analyzer module for use in CLCS

MOO.

Appendix B284

• University of Arizona, Tucson. “Learning in Cyberspace: Piloting An

Educational MOO for the University of Arizona.” Principle researcher:

Roxanne Mountford. 1998.

(http://oldpueblomoo.arizona.edu:7000/2680/) Purpose: Development of

OldPuebloMOO. Currently their MOO is one of three university-

supported online technologies (in addition to WebCT and CAUCUS).

Three of four grant-supported team members were hired by the Center for

Computing and Information Technology, and one of them has received a

full-time job (benefits, $35K+/yr., tuition) to be the faculty liason for the

MOO (see http://oldpueblomoo.arizona.edu/awards.html for list of

grants and awards).

• Vassar College. “Proposal for Mellon Foundation Program for Teaching

with Technology: Utilizing a MOO for Intercultural Language Learning.”

Principle researchers: Jeffrey Schneider and Silke von der Emde. German

Department. Purpose: Developed MOOssiggang German language MOO

and conducted workshop and symposium for foreign language faculty

from Vassar College and Williams College.

• Michigan Technological University. Northwoods MOO. Principle

Researcher: Michael Moore. Humanities Department. Funded through “a

grant from the Michigan Department of Education and funds provided

through a Technology Challenge Innovation Grant totaling $1,737,940

from the U.S. Department of Education and 49% of total costs from

contributions from school districts and business/industry partners in the

Central Upper Peninsula of Michigan. The project is part of Project TELL --

Technology in Education through Leadership and Literacy. Over 12 school

districts and institutions participate in the project.

enCore Portfolio 285

• Texas Women’s University. TWU MOO. Principle Researcher: Dene

Grigar. English Department. $57,300 from Partnership Funds to develop

and maintain a campus-wide interactive virtual space, called TWUMOO,

for the purposes of teaching in distance learning courses and traditional

educational environments, as well as for research and professional

development activities. 1998-2000.

Sample of publications based on primary research utilizing enCore MOOs

Aarseth, Espen, and Carsten Jopp. CALLMOO fase I - Sluttrapport. 1998.

http://cmc.hf.uib.no/dreistadt/eval/sluttrapp.html (6 June 2003).

Borovic, Claudijo. What is MOO? – a cyberculture study. Unpublished Master’s

thesis. Multimedia-Pedagogical Institute of Stockholm University, Sweden,

forthcoming.

Donaldson, Randall P. and Markus Kötter. “Language learning in cyberspace:

Teleporting the classroom into the target culture.” Calico 16.4 1999: 531-557.

English, Joel A. Assessing the synchronous online classroom. Methodologies and

findings in real-time virtual learning environments. Unpublished PhD

dissertation. Ball State University, Department of English, 1999.

_____. "MOO-based metacognition: Incorporating online and offline reflection

into the writing process." Kairos : A Journal for Teachers of Writing in Webbed

Environments. 3.1 1998.

http://english.ttu.edu/kairos/3.1/features/english/intro.html/ (17 Oct.

2002).

Grigar, Dene. "TWUMOO's Interactive Virtual Archives." Kairos : A Journal for

Teachers of Writing in Webbed Environments 5.2 Fall 2000.

http://english.ttu.edu/kairos/5.2/coverweb.html (6 June 2003).

Appendix B286

Hammer, Anita Synnøve. Weaving Plots: Frames of Theatre and Ritual in

Simultaneous Interactive Digital Communication. PhD Dissertation. Norwegian

University of Science and Technology, 2001.

Haynes, Cynthia. “Total ReCall: Memory, MOOs, and Morphology.” Keynote

address at CALLMOO: Enhancing Language Learning Through Internet

Technologies, University of Bergen, Norway, 1997.

_____. WOOing Prosthetica: Dreams, Droids, and Other Feminist Technologies. Editor

of special MOO-based real-time issue of Pre/Text: Electra(lite), (an electronic

journal of rhetorical theory), PT 2.1 Fall 1999.

http://www.utdallas.edu/PT/PT2.1/ (6 June 2003).

Haynes, Cynthia and Jan Rune Holmevik, eds. High Wired: On the Design, Use,

and Theory of Educational MOOs. (1998) Ann Arbor, MI: University of

Michigan Press, 2nd edition, 2002.

Haynes, Cynthia, Jan Rune Holmevik, Beth Kolko and Victor J. Vitanza. “MOOs,

Anarchitexture, Towards a New Threshold” in The Emerging CyberCulture:

Literacy, Paradigm, and Paradox. eds. Stephanie Gibson and Ollie Oviedo.

Hampton Press, 1999.

Holmevik, Jan Rune and Cynthia Haynes. MOOniversity: A Student’s Guide to

Online Learning Environments. Needham Heights, MA: Allyn & Bacon, 2000.

Karper, Erin. “Encore MOO Guide” (with Lennie Irvin) 2001, 2003. Purdue

University, Writing Program.

http://pw.english.purdue.edu/technologies/MOO/guide/index.html (6

June 2003).

Klastrup, Lisbeth. Towards a Poetics of Virtual Worlds: Multi-user Textuality and the

Emergence of Story. Unpublished PhD dissertation. IT University,

Copenhagen. Department of Digital Aesthetics and Communication, 2003.

enCore Portfolio 287

Koch, Jr., Robert. MOO Stories: A Collection of Case Studies on Teaching Writing in

Object-Oriented Multi-User Domains. Unpublished PhD dissertation. Indiana

University of PA, forthcoming.

Kötter, Markus. “Networked On-line Environments: How Can They Contribute

to (second) Language Acquisition?” in Effective CALL: Wedding Theory with

Practice. eds. Randall P. Donaldson and Margaret A. Haggstrom.

Netherlands: Swets and Zeitlinger, forthcoming 2003.

_____. Tandem Learning on the Internet: Learner interactions in virtual online

environments (MOOs). Frankfurt am Main: Peter Lang, 2002.

Love, Jane. “MOO-Scream on its wayves to WOOmb-SCREAMS.” Pre/Text

Electra(Lite) 3.1 (2000).

http://www.utdallas.edu/pretext/PT3.1/love/love.html (9 June 2003).

Nideffer, Robert. “Manufacturing Agency: Relationally Structuring Community

In-Formation.” Artificial Intelligence and Society. Spring 1999.

http://time.arts.ucla.edu/AI_Society/nideffer.html (9 June 2003).

_____. PROXY. Internet Application. Java-based and enCore-based, Open

Sourced Multi-Agent Management and Development Environment. (v1.0b

Released Fall 2001; Ongoing Research and Development, Fall 1997-Present)

http://proxy.arts.uci.edu/ (9 June, 2003).

_____. “PROXY.” Exhibitions. “Biennale of Electronic Arts Perth (BEAP).” John

Curtin Gallery. Perth, Australia. July 31-September 15, 2002; “Whitney

Biennial.” Whitney Museum of American Art. New York City, New York

(http://www.whitney.org/artport/exhibitions/biennial2002/nideffer.shtm

l). March 7-May 26, 2002; “fusion'00.” Invited Artist. Bauhaus University.

Weimar, Germany. Design Media Arts. University of California, Los

Angeles. June 7-9, 2000.

Appendix B288

O'Rourke, Breffni. Metalinguistic knowledge and instructed second language

acquisition: a theoretical model and its pedagogical application in computer-

mediated communication. Unpublished PhD dissertation. Centre for Language

and Communication Studies. University of Dublin, Trinity College, 2002.

Schneider, Jeff and Silke von der Emde. “Brave New (Virtual) World:

Transforming language learning into cultural studies through online

learning environments (MOOs).” ADFL Bulletin 32.1 (2000): 18-26.

Schwienhorst, Klaus. "Evaluating tandem language learning in the MOO:

Discourse repair strategies in a bilingual Internet project." CALL 15 (2) 2002:

135-146.

_____. “Talking on the MOO: Learner autonomy and language learning in

tandem.” Paper presented at the CALLMOO: Enhancing Language

Learning Through Internet Technologies, Bergen, Norway, 1997.

http://www.tcd.ie/CLCS/assistants/kschwien/Publications/CALLMOOt

alk.htm (20 Jan. 2003).

_____. Virtual reality and learner autonomy in second language acquisition.

Unpublished PhD dissertation. Trinity College Dublin, 2000.

Tree, Everdeen. “Quick-shift.” trAce Writing Center.

http://trace.ntu.ac.uk/quickshift/jantext.htm (6 June 2003).

Von der Emde, Silke and Jeff Schneider. “Experiential Learning and

Collaborative Reading: Literacy in the Space of Virtual Encounters.” Between

the Lines: Perspectives on Foreign Language Literacy. ed. P. Patrikis. New

Haven: Yale University Press, forthcoming.

enCore Portfolio 289

Awards and media recognition

• March 13, 1996: Lingua MOO featured in article in online version of The

Chronicle of Higher Education. “Academic Resources on the Internet” by

Jeffrey R. Young.

• Spring, 1997. Kairos online journal announcement. “Kairos Forms

Affiliation with Renowned MOO.”

(http://english.ttu.edu/kairos/2.2/news/briefs/lingua.htm).

• May 28, 2000: The enCore educational MOO project won an award for

“Best Rhetoric and Writing Software Product in University Education” in

the Computers and Writing Conference 2000 Technology Design

Competition held in Fort Worth, Texas.

• May 28, 2000: Kairos Award: ”Best WebText of 2000,” presented at

Computers and Writing 2000, Fort Worth, TX, May, 2000, for Jane Love’s

“MOO-Scream on its wayves to WOOmb-SCREAMS,” in Pre/Text

Electra(Lite) V. 3.1, 2000.

• Oct 24, 2000: EnCore MOOs featured in article in online version of The

Chronicle of Higher Education. “Instructors Try Out Updated MOOs as

Online-Course Classrooms” by Jeffrey R. Young

(http://chronicle.com/free/2000/10/2000102401u.htm).

• December 16, 2000: “DotCom Hour” interview with Tim Hoffman

broadcasting out of AM 1590 WSMN in Nashua, NH. The show has over

2.5 Million potential listeners. The DotCom Hour is a regularly scheduled

radio talk show that focuses on Internet & Computer related topics

(http:// www.thedotcomhour.com).

Appendix B290

• July 10, 2001: Salon.com article on software licensing cites Lingua MOO.

(http://www.salon.com/tech/feature/2001/07/10/microsoft_school/ind

ex.html).

• November 7, 2001: UK National Grid for Learning featured Lingua MOO

site as chosen by Sue Thomas of trace Writing Community, University of

Nottingham, England

(http://www.ngfl.gov.uk/features.jsp?sec=15&cat=99&res=1004).

• December 17, 2002: Norwegian national radio sent a short feature on

MOO. The first part is Jan Holmevik talking about enCore MOOs, and the

second part is Cynthia Haynes talking briefly about the pedagogy of

MOO. The interview is in Windows Media format

(http://www.nrk.no/dynasx?p_lenke_id=318995&p_artikkel_id=2377051

&mswmext=.asx).

C

Open Publication License

v1.0, 8 June 1999

I. Requirements On Both Unmodified And Modified Versions

The Open Publication works may be reproduced and distributed in whole or in

part, in any medium physical or electronic, provided that the terms of this license

are adhered to, and that this license or an incorporation of it by reference (with

any options elected by the author(s) and/or publisher) is displayed in the

reproduction.

Proper form for an incorporation by reference is as follows:

Copyright (c) <year> by <author's name or designee>. This material may be

distributed only subject to the terms and conditions set forth in the Open

Publication License, vX.Y or later (the latest version is presently available at

http://www.opencontent.org/openpub/).

The reference must be immediately followed with any options elected by the

Appendix C292

author(s) and/or publisher of the document (see section VI).

Commercial redistribution of Open Publication-licensed material is permitted.

Any publication in standard (paper) book form shall require the citation of the

original publisher and author. The publisher and author's names shall appear on

all outer surfaces of the book. On all outer surfaces of the book the original

publisher's name shall be as large as the title of the work and cited as possessive

with respect to the title.

II. Copyright

The copyright to each Open Publication is owned by its author(s) or designee.

III. Scope Of License

The following license terms apply to all Open Publication works, unless

otherwise explicitly stated in the document.

Mere aggregation of Open Publication works or a portion of an Open Publication

work with other works or programs on the same media shall not cause this

license to apply to those other works. The aggregate work shall contain a notice

specifying the inclusion of the Open Publication material and appropriate

copyright notice.

SEVERABILITY. If any part of this license is found to be unenforceable in any

jurisdiction, the remaining portions of the license remain in force.

Open Publication License 293

NO WARRANTY. Open Publication works are licensed and provided "as is"

without warranty of any kind, express or implied, including, but not limited to,

the implied warranties of merchantability and fitness for a particular purpose or

a warranty of non-infringement.

IV. Requirements On Modified Works

All modified versions of documents covered by this license, including

translations, anthologies, compilations and partial documents, must meet the

following requirements:

1) The modified version must be labeled as such.

2) The person making the modifications must be identified and the

modifications dated.

3) Acknowledgement of the original author and publisher if applicable must

be retained according to normal academic citation practices.

4) The location of the original unmodified document must be identified.

5) The original author's (or authors') name(s) may not be used to assert or

imply endorsement of the resulting document without the original

author's (or authors') permission.

V. Good-Practice Recommendations

In addition to the requirements of this license, it is requested from and strongly

recommended of redistributors that:

Appendix C294

1) If you are distributing Open Publication works on hardcopy or CD-ROM,

you provide email notification to the authors of your intent to redistribute

at least thirty days before your manuscript or media freeze, to give the

authors time to provide updated documents. This notification should

describe modifications, if any, made to the document.

2) All substantive modifications (including deletions) be either clearly marked

up in the document or else described in an attachment to the document.

3) Finally, while it is not mandatory under this license, it is considered good

form to offer a free copy of any hardcopy and CD-ROM expression of an

Open Publication-licensed work to its author(s).

VI. License Options

The author(s) and/or publisher of an Open Publication-licensed document may

elect certain options by appending language to the reference to or copy of the

license. These options are considered part of the license instance and must be

included with the license (or its incorporation by reference) in derived works.

A) To prohibit distribution of substantively modified versions without the

explicit permission of the author(s). "Substantive modification" is defined

as a change to the semantic content of the document, and excludes mere

changes in format or typographical corrections.

To accomplish this, add the phrase `Distribution of substantively

modified versions of this document is prohibited without the explicit

permission of the copyright holder.' to the license reference or copy.

Open Publication License 295

B) To prohibit any publication of this work or derivative works in whole or

in part in standard (paper) book form for commercial purposes is

prohibited unless prior permission is obtained from the copyright holder.

To accomplish this, add the phrase 'Distribution of the work or derivative

of the work in any standard (paper) book form is prohibited unless prior

permission is obtained from the copyright holder.' to the license reference

or copy.

Appendix C296

References

References

Documentation style: MLA and Columbia Online Style (COS), Humanities

Aarseth, Espen. Cybertext: Perspectives on Ergodic Literature. Baltimore: Johns

Hopkins University Press, 1997.

_____, ed. Datahåndbok for humanister. Oslo: Ad Notam Gyldendal, 1999.

_____. Innføring i kulturell informatikk. Bergen: Universitetet i Bergen, 1996.

Adams, Rich. “A History of ‘Adventure’.” The Colossal Cave Adventure Page. (7

April 2000) http://people.delphi.com/rickadams/adventure/a_history.html

(17 Jan. 2001).

Allison, David K. “Smithsonian Oral and Video Histories: Marc Andreessen.”

Smithsonian Institution.

http://americanhistory.si.edu/csr/comphist/ma1.html (29 March 2002).

Anderson, Judy. Personal Interview. 28 Jan. 2001.

Antell, Kimberly M. “Re: MUD Info.” 19 April 1991.

http://www.apocalypse.org/pub/u/lpb/muddex/mud-answers3.html (27

Jan. 2001).

References300

Apache HTTP Server Version 1.3 Documentation. Apache.org.

http://httpd.apache.org/docs/ (5 Nov. 2002).

Apache Software Foundation. http://apache.org/ (9 Nov. 2002).

Apple Computer. “The Evolution of Darwin.” Apple Developer Connection.

http://developer.apple.com/darwin/history.html (20 Nov. 2002).

Aspnes, James. “TinyMUD now available via telnet.” 19. Aug. 1989.

http://www.apocalypse.org/pub/u/lpb/muddex/a-o.html (27 Jan. 2001).

_____. Personal Interview. 27 Feb. 2001.

Aspray, William. John Von Neumann and the Origins of Modern Computing.

Cambridge, MA.: MIT Press, 1990.

Babbage, Charles. Passages from the Life of a Philosopher. ed. Martin Campbell-

Kelly. New Brunswick, NJ: Rutgers University Press, 1994.

Barrios, Jorge R. and Deanna Wilkes-Gibbs. “How to MOO without Making a

Sound: A Guide to the Virtual Communities Known as MOOs.” High Wired:

On the Design, Use, and Theory of Educational MOOs. eds. Cynthia Haynes and

Jan Rune Holmevik. (1998) Ann Arbor: University of Michigan Press, 2nd

edition 2002. 45-87.

Bartle, Richard. “Incarnations of MUD.” 2000.

http://www.mud.co.uk/richard/incarns.htm (27 Jan. 2001).

_____. Interview. The BL Rag. 1997. http://www.mud.co.uk/richard/bl9c.htm

(26 Jan. 2001).

References 301

_____. “Richard Bartle: Biography.” 21 Jan. 1999

http://www.mud.co.uk/richard/biog.htm (16 Jan. 2001).

Berners-Lee, Tim. “C5-Conclusion.” W3C.

http://www.w3.org/Talks/C5_conclusion.html (28 March 2002).

_____. “Information Management: A Proposal.”

http://www.w3.org/History/1989/proposal.html (14 March 2002).

_____. “Re: Qualifiers on Hypertext links...” 6 Aug. 1991. News:alt.hypertext. (28

March 2002).

_____. “The World Wide Web: Past, Present and Future.”

http://www.w3.org/People/Berners-Lee/1996/ppf.html (13 March 2002).

Berners-Lee, Tim and Robert Cailliau. “WorldWideWeb: Proposal for a

HyperText Project.” http://www.w3.org/Proposal.html (27 March 2002).

Berners-Lee, Tim, Mark Fischetti, and Michael L. Dertouzos. Weaving the Web: The

Original Design and Ultimate Destiny of the World Wide Web. San Francisco:

Harper Collins, 1999.

Boswell, David et.al. “Creating Applications with Mozilla.” O’Reilly 2002.

http://books.mozdev.org/ (20 Nov. 2002).

Brandt, Daniel. “PageRank: Google’s Original Sin.” Google-Watch.org.

http://www.google-watch.org/pagerank.html (20 June 2003).

Brin, Sergey and Lawrence Page. “The Anatomy of a Large-Scale Hypertextual

Web Search Engine.” Seventh International World Wide Web Conference.

References302

Brisbane Australia 14-18 April, 1998.

http://www7.scu.edu.au/programme/fullpapers/1921/com1921.htm (20

June 2003)

British Legends (MUD1). Telnet://www.british-legends.com:27750 (20 Jan. 2001).

Broersma, Matthew. “Eric Raymond: Why open source will rule.” ZDNet (UK) 29

March 2002. http://zdnet.com.com/2100-1104-871366.html (1 Nov. 2002).

_____. “Raymond: Mac OS X too restrictive.” ZDNet (UK) 26 March 2002.

http://zdnet.com.com/2100-1104-868865.html (1 Nov. 2002).

Bruckman, Amy. “Finding One’s Own in Cyberspace.” High Wired: On the Design,

Use, and Theory of Educational MOOs. eds. Cynthia Haynes and Jan Rune

Holmevik. (1998) Ann Arbor, MI: University of Michigan Press, 2nd edition

2002. 15-24.

_____. “MacMOOSE.”

http://www.cc.gatech.edu/fac/Amy.Bruckman/MacMOOSE/ (14 May

2003).

Bruckman, Amy and Mitchel Resnick. “The MediaMOO Project: Constructionism

and Professional Community.” Convergence 1:1 Spring 1995.

http://asb.www.media.mit.edu/people/asb/convergence.html (12 March

2003).

Burk, Juli. “The Play’s the Thing: Theatricality and the MOO Environment.” High

Wired: On the Design, Use, and Theory of Educational MOOs. eds. Cynthia

References 303

Haynes and Jan Rune Holmevik. (1998) Ann Arbor: University of Michigan

Press, 2nd edition 2002. 232-49.

Burka, Lauren P. “A Hypertext History of Multi-User Dimensions.” 1993. The

MUDdex. http://www.apocalypse.org/pub/u/lpb/muddex/essay/ (26 Jan.

2001).

_____. The MUD Time Line. 1995. The MUDdex.

http://www.apocalypse.org/pub/u/lpb/muddex/mudline.html (27 Jan.

2001).

Bush, Vannevar. “As We May Think.” The Atlantic Online. July 1945.

http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm (26

March 2002).

Campbell, Todd. “The First E-Mail Message.” PreText Magazine 5. 1998.

http://www.pretext.com/mar98/features/story2.htm (14 March 2002).

Cederqvist, Per. “Version Management with CVS.”

http://www.cvshome.org/docs/manual/cvs.html (4 Nov. 2002).

Ceruzzi, Paul E. A History of Modern Computing. Cambridge, MA.: MIT Press,

1998.

Chalmers, Rachel. “The Unknown Hackers.” Salon.com. 17 May 2000.

http://www.salon.com/tech/feature/2000/05/17/386bsd/print.html (25

Aug. 2001).

Chassell, Robert. Personal Interview. 7 Feb. 2001.

References304

“Chat Politics.” Nethistory: An Informal History of BITNET and the Internet.

http://nethistory.dumbentia.com/chatpol.html (16 March 2002).

Chin, Elliot and Andrew Park. “History of Advanced Dungeons and Dragons.”

Gamespot. http://www.gamespot.com/features/history_add/ (19 Jan. 2001).

Christensen, Ward and Randy Suess. “Birth of the BBS.”

http://timeline.textfiles.com/1978/01/16/2/FILES/cbbs.txt (14 March

2002).

Cisco Systems Inc. “Understanding TCP/IP.”

http://www.cisco.com/univercd/cc/td/doc/product/iaabu/centri4/user/s

cf4ap1.htm (13 March 2001).

Cohen, Nancy. “Open Content: The Revolution in Publishing.”

http://www.open-mag.com/features/Vol_49/Perens/Perens.htm (16 June

2003).

Collegetown. Telnet://ctown.bvu.edu:7777 (17 June 2003)

Cooke, Daniel, Joseph Urban, and Scott Hamilton. “Unix and Beyond: An

Interview with Ken Thompson.” Computer.org May, 1999.

http://www.computer.org/computer/thompson.htm (9 Aug. 2001).

Corbató, F. J. and Vyssotsky, V. A. “Introduction and Overview of the Multics

System.” Multics.org. http://www.multicians.org/fjcc1.html (8 Aug. 2001).

Crump, Eric. “At Home in the MUD: Writing Centers Learn to Wallow.” High

Wired: On the Design, Use, and Theory of Educational MOOs. eds. Cynthia

References 305

Haynes and Jan Rune Holmevik. (1998) Ann Arbor: University of Michigan

Press, 2nd edition 2002. 177-91.

Curtis, Pavel. “Mudding: Social Phenomena in Text-Based Virtual Realities."

(Berkeley, CA: 1992). http://www.zacha.net/articles/mudding.html (3

March 2003).

_____. “Not Just a Game: How LambdaMOO Came to Exist and What It Did to

Get Back at Me.” High Wired: On the Design, Use, and Theory of Educational

MOOs. eds. Cynthia Haynes and Jan Rune Holmevik. (1998) Ann Arbor, MI:

University of Michigan Press, 2nd edition 2002. 25-42.

_____. Personal Interview. 25 Jan. 2001.

Davis, D. Diane. “(Non)Fiction(‘s) Addiction(s): A NarcoAnalysis of Virtual

Worlds.” High Wired: On the Design, Use, and Theory of Educational MOOs. eds.

Cynthia Haynes and Jan Rune Holmevik. (1998) Ann Arbor: University of

Michigan Press, 2nd edition 2002. 267-85.

Day, Michael. “Re: [enCore] Research Info Needed.” Personal email. (11 March

2003).

Dibble, Julian. “A Rape in Cyberspace: How an Evil Clown, a Haitian Trickster

Spirit, Two Wizards, and a Cast of Dozens Turned a Database Into a Society.”

Village Voice 23 Dec. 1993. http://www.levity.com/julian/bungle_vv.html (4

Nov. 2002).

Diversity University. http://moo.du.org:8888/ (17 June 2003).

References306

Dreistadt. http://cmc.uib.no:7001/ (20 June 2003)

“Early IRC History.” The-Project.org. http://www.the-project.org/history.html

(17 March 2002).

“Expanding the Universe of Ideas.” Wired News. 17 June 1999.

http://www.wired.com/news/politics/0,1283,20276,00.html (15 June 2003).

Festa, Paul. “Present at the ‘e’-creation.” CNET News.com. 10 Oct. 2001.

http://news.com.com/2008-1082-274161.html?legacy=cnet (14 March 2002).

Fielding, Roy T. “Shared Leadership in the Apache Project.” Communications of

the ACM 42.4 (April 1999): 42-43.

Flanagan, David. Java in a Nutshell. Cambridge, MA.: O’Reilly and Associates 2nd

edition, 1997.

Flanagan, David. Javascript: The Definitive Guide. Cambridge, MA.: O’Reilly and

Associates 2nd edition, 1997.

Frauenheim, Ed. “Crafting the free-software future.” Salon.com 6 March 2001.

http://archive.salon.com/tech/feature/2001/03/06/sourceforge/index.html

(22 Nov. 2002).

Free Software Foundation. “GNU Free Documentation License.”

http://www.gnu.org/licenses/fdl.html (14 Nov. 2002).

Freshmeat. “About.” http://freshmeat.net/about/ (13 Nov. 2002).

_____. “Welcome to Freshmeat.net.” http://freshmeat.net/ (13 Nov. 2002).

References 307

GCC. GNU Compiler Collection. http://gcc.gnu.org (29 Aug. 2001).

Giloi, Wolfgang K. “Konrad Zuse's Plankalkül: The First High-Level, ‘non von

Neumann’ Programming Language.” Annals of the History of Computing. 10.2

(April-June 1997): 17-24.

Glasner, Johanna. “The Biggest IPO of 1999?” Wired News. 18 Dec. 1999.

http://www.wired.com/news/business/0,1367,33166,00.html (9 Nov. 2002).

_____. “VA Linux Sets IPO Record.” Wired News. 9 Dec. 1999.

http://www.wired.com/news/business/0,1367,33009,00.html (9 Nov. 2002).

Glave, James. “Putting a Price on Free Source.” Wired News. 12 May 1998.

http://www.wired.com/news/technology/0,1282,12262,00.html (22 Nov.

2002).

Glusman, Gustavo. “BioMOO’s Purpose Statement.”

http://bioinfo.weizmann.ac.il/BioMOO/purpose.html (2 March 2003).

GNU. “GNU Emacs FAQ.” GNU.

http://www.gnu.org/software/emacs/emacs-faq.text (28 August 2001).

_____. “GNU Free Documentation License.” GNU.

http://www.gnu.org/licenses/fdl.html (16 June 2003).

Goldstine, Herman. The Computer from Pascal to von Neumann. Princeton:

Princeton University Press, 1972.

Google Technology. Google http://www.google.com/technology/ (8 June 2003).

References308

Grigar, Dene. “Dene Grigar’s On-Line Dissertation Defense.” Lingua MOO. 25

July 1995. http://lingua.utdallas.edu:7000/1099 (1 May 2003).

Grigar, Dene and John F. Barber. “Defending Your Life in MOOspace: A Report

from the Electronic Edge.” High Wired: On the Design, Use, and Theory of

Educational MOOs. eds. Cynthia Haynes and Jan Rune Holmevik. (1998) Ann

Arbor: University of Michigan Press, 2nd edition 2002. 192-31.

Guernsey, Lisa. “College "MOOs" Foster Creativity and Collaboration Among

Users.” The Chronicle of Higher Education 9 Feb. 1996.

http://www.bvu.edu/ctown/CHE.html (16 March 2003).

Hafner, Katie, and Matthew Lyon. “Talking Headers.” The Washington Post

Magazine. 4 Aug. 1996.

http://www.olografix.org/gubi/estate/libri/wizards/email.html (14 March

2002).

Hammel, Michael J. “The History of XFree86: Over a Decade of Development.”

Linux Magazine. Dec. 2001. http://www.linux-mag.com/2001-

12/xfree86_01.html (25 March 2002).

Harold, Elliotte Rusty, and W. Scott Means. XML in a Nutshell. Cambridge MA.:

O’Reilly and Associates 2nd edition, 2002.

Hauben, Michael, and Ronda Hauben. Netizens: On the History and Impact of

Usenet and the Internet. http://www.columbia.edu/~rh120/ (14 March 2002).

Haynes, Cynthia. Beta Rhetoric: Writing, Technology, and Deconstruction. Albany,

NY: State University of New York Press, forthcoming 2004.

References 309

_____. Help! There’s a MOO in This Class!” High Wired: On the Design, Use, and

Theory of Educational MOOs. eds. Cynthia Haynes and Jan Rune Holmevik.

(1998) Ann Arbor: University of Michigan Press, 2nd edition 2002. 161-76.

Haynes, Cynthia and Jan Rune Holmevik, eds. High Wired: On the Design, Use and

Theory of Educational MOOs. (1998) Ann Arbor, MI: University of Michigan

Press, 2nd edition 2002.

Haynes, Cynthia, Jan Rune Holmevik, Beth Kolko, and Victor J. Vitanza. “MOOs,

Anarchitexture, Towards a New Threshold.” The Emerging Cyberculture:

Literacy, Paradigm, and Paradox. eds. Stephanie Gibson and Ollie Oviedo.

Cresskill, NJ: Hampton Press, 1999. 229-62.

Himanen, Pekka. The Hacker Ethic. New York: Random House, 2001.

Hobbler, Roy C. “Apache: More than a Web server.” ZDNet. 30 Sept. 2002.

http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2881957,00.

html (25 Nov. 2002).

Hodges, Andrew. Alan Turing: The Enigma. New York: Walker and Company,

2000.

Holmevik, Jan Rune. Educating the Machine. A Study in the History of Computing

and the Simula Programming Languages. Trondheim: Center for Technology and

Society, 1994.

_____. “Java—programmeringsspråk som sprengjer grenser” Datahåndbok for

humanister. ed. Espen Aarseth. Oslo: Ad Notam Gyldendal, 1999. 107-21.

References310

_____. “Taking the MOO by the Horns: How to Design, Set Up, and Manage an

Educational MOO.” High Wired: On the Design, Use, and Theory of Educational

MOOs. eds. Cynthia Haynes and Jan Rune Holmevik. (1998) Ann Arbor:

University of Michigan Press, 2nd edition 2002. 107-47.

Holmevik, Jan Rune and Cynthia Haynes. “CypherText MOOves: A Dance with

Real-Time Publication.” New Worlds, New Words: Exploring Pathways for

Writing about and in Electronic Environments. eds. John F. Barber and Dene

Grigar. Cresskill, NJ: Hampton Press, 2001. 213-32.

_____. MOOniversity: A Student’s Guide to Online Learning Environments.

Needham Heights, MA.: Allyn & Bacon, 2000.

Hopper, Grace Murray. “Keynote Address.” History of Programming Languages.

ed. Richard Wexelblat. ACM Monograph Series (Proceedings of the History of

Programming Languages Conference, Los Angeles, CA., 1978). New York:

Academic Press, 1981.

Hubbard, Jordan. “A Brief History of FreeBSD.” FreeBSD Documentation Project.

FreeBSD Handbook. http://www.freebsd.org/doc/en_US.ISO8859-

1/books/handbook/index.html (25 Aug. 2001).

IRC Persian Gulf War Logs.

http://www.ibiblio.org/pub/academic/communications/logs/Gulf-War/

(17 March 2002).

Jay’s House MOO. Telnet://jhm.ccs.neu.edu:1709 (26 Jan, 2001).

References 311

Joyce, Jim. “Interview with Bill Joy.” Unix Review. Aug. 1984.

http://www.cs.pdx.edu/~kirkenda/joy84.html (23 Aug. 2001).

Joyce, Michael. “Songs of Thy Selves: Persistence, Momentariness, Recurrence

and the MOO. High Wired: On the Design, Use, and Theory of Educational MOOs.

eds. Cynthia Haynes and Jan Rune Holmevik. (1998) Ann Arbor: University

of Michigan Press, 2nd edition 2002. 311-23.

Keegan, Martin. “A Classification of MUDs.” Journal of MUD Research. 2.2 (1997).

http://www.brandeis.edu/pubs/jove/HTML/v2/keegan.html (27 Jan.

2001).

Kehoe, Brendan P. Zen and the Art of the Internet: A Beginner's Guide to the Internet.

(1992) http://www.cs.indiana.edu/docproject/zen/zen-1.0_toc.html (17

March 2002).

Kell, Jeff. “Relay: Past, Present, and Future.” NetHistory.com. Excerpt from

presentation at NETCON, New Orleans, 1987.

http://nethistory.dumbentia.com/relayhist.html (16 March 2002).

Kernighan, Brian and Dennis Ritchie. The C Programming Language. Englewood

Cliffs, NJ: Prentice Hall, 1978.

Kolko, Beth. “Bodies in Place: Real Politics, Real Pedagogy, and Virtual Space.”

High Wired: On the Design, Use, and Theory of Educational MOOs. eds. Cynthia

Haynes and Jan Rune Holmevik. (1998) Ann Arbor: University of Michigan

Press, 2nd edition 2002. 253-65.

References312

Kornblum, Janet. “Netscape sets source code free.” c|net. 31 March 1998.

http://news.com.com/2100-1001-209666.html?legacy=cnet (20 Nov. 2002).

Lambda MOO. Telnet://lambda.moo.mud.org:8000 (26 Jan. 2001).

Landow, George P. Hypertext: The Convergence of Contemporary Critical Theory and

Technology. Baltimore: Johns Hopkins University Press, 1992.

Lash, Alex. “Netscape's enterprise challenge.” C|net 26 Nov. 1997.

http://news.com.com/2100-1001-205794.html?tag=rn (3 Nov. 2002).

Lee, J.A.N. “Charles Babbage.” Sept. 1994. Department of Computer Science,

Virginia Tech University. http://ei.cs.vt.edu/~history/Babbage.html (25

Nov. 2002).

_____. “Konrad Zuse.” Sept. 1994. Department of Computer Science, Virginia

Tech University. http://ei.cs.vt.edu/~history/Zuse.html (25 Nov. 2002).

Leiner, Barry M. et al. “A Brief History of the Internet.” Internet Society (ISOC).

http://www.isoc.org/internet-history/brief.html (16 Jan. 2002).

Leonard, Andrew. “BSD Unix: Power to the people from the code.” Salon.com. 16

May 2000.

http://www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.ht

ml (23 Aug. 2001).

_____. “Let my software go!” Salon.com. 30 March 1998.

http://dir.salon.com/21st/feature/1998/04/cov_14feature.html (17 Nov.

2002).

References 313

_____. “Mozilla dreams.” Salon.com. 10 Feb. 2000.

http://dir.salon.com/tech/feature/2000/02/10/mozilla/index.html (17

Nov. 2002).

_____. “Mozilla’s revenge.” Salon.com. 12 March 2002.

http://www.salon.com/tech/col/leon/2002/03/12/mozilla/index.html (17

Nov. 2002).

_____. “The Richard Stallman saga, redux.” Salon.com. 11 Sept. 1998.

http://dir.salon.com/21st/feature/1998/09/11feature.html (18 Nov. 2002).

_____. “The saint of free software.” Salon.com. 30 July 1998.

http://dir.salon.com/21st/feature/1998/08/cov_31feature.html (2 Nov.

1998).

_____. “The shape of open source to come.” Salon.com. 3 Feb. 2000.

http://dir.salon.com/tech/log/2000/02/03/slashdot/index.html (19 Nov.

2002).

Levy, Stephen. Hackers: Heroes of the Computer Revolution. New York: Penguin,

1984.

Lingo.uib. http://lingo.uib.no/lingo-uib/ (14 May 2003).

Lingua MOO. http://lingua.utdallas.edu:7000 (25 Jan. 2001).

Linus vs. Tanenbaum. 29 Jan. 1992. http://mm.iit.uni-

miskolc.hu/Data/texts/linus_vs_tanenbaum.html (16 June 2003).

References314

Malda, Rob. “About Rob Malda.” http://www.cmdrtaco.net/rob.shtml (18 Nov.

2002).

Manjoo, Farhad. “Mozilla rising.” Salon.com. 10 Sept. 2002.

http://www.salon.com/tech/feature/2002/09/10/browser_wars/ (26 Nov.

2002).

Markoff, John and Amy Harmon. “Internal Memo Shows Microsoft Executives'

Concern Over Free Software.” New York Times. 3 Nov. 1998.

http://www.nytimes.com/library/tech/98/11/biztech/articles/03memo.ht

ml (3 Nov. 2002).

McCarthy, John. “A Time Sharing Operator Program for our Projected IBM 709.”

1 Jan. 1959. http://www-formal.stanford.edu/jmc/history/timesharing-

memo/timesharing-memo.html (31 July 2001).

_____. “Reminiscences on the History of Time Sharing.” 1983. http://www-

formal.stanford.edu/jmc/history/timesharing/timesharing.html (30 July

2001).

McCool, Rob, Roy T. Fielding and Brian Behlendorf. “The Apache Story.” Linux

Magazine June 1999. http://www.linux-mag.com/1999-06/apache_01.html (2

Nov. 2002).

McHugh, Josh. “For the love of Hacking.” Forbes Magazine. 10 Aug. 1998.

http://www.forbes.com/forbes/1998/0810/6203094a.html (13 Nov. 2002).

McKusick, Marshall Kirk. “Twenty Years of Berkeley Unix: From AT&T-Owned

to Freely Redistributable.” Open Sources: Voices from the Open Source

References 315

Revolution. eds. Chris DiBona, Sam Ockman and Mark Stone. O’Reilly, 1999.

http://www.oreilly.com/catalog/opensources/book/kirkmck.html (16 Aug.

2001).

 McMillan Robert. “Our Man in Palo Alto.” Linux Magazine Sept. 2001.

http://www.linux-mag.com/2001-09/perens_01.html (17 Nov. 2002).

MediaMOO. telnet://mediamoo.engl.niu.edu 8888 (17 June 2003).

Meyer, Eric. Cascading Style Sheets: The Definitive Guide. Cambridge MA.: O’Reilly

and Associates, 2000.

Microsoft. “Linux and the Open Software Source Model - A Question and

Answer Session With Ed Muth Enterprise Marketing Group Manager,

Microsoft Corp.” Microsoft.

http://web.archive.org/web/20010211142733/http://www.microsoft.com/

ntserver/nts/news/mwarv/linuxresp.asp (21 Nov. 2002).

Mockus, Audris, Roy T, Fielding and James D. Herbsleb. “Two Case Studies of

Open Source Software Development: Apache and Mozilla.”

http://www.ics.uci.edu/~wscacchi/Software-Process/Readings/mozilla-

apache-case-study-TOSEM-2002.pdf (3 Nov. 2002).

“Mozilla 1.0 Release Announcement.” Mozilla.org. 5 June 2002.

http://www.mozilla.org/releases/mozilla1.0.html (11 Nov. 2002).

Mozilla. “Development Roadmap.” Mozilla.org. 26 Oct. 1998.

http://www.mozilla.org/roadmap/roadmap-26-Oct-1998.html (11 Nov.

2002).

References316

Mozilla. “nglayout project / gecko layout engine.” Mozilla.org. 7 Nov. 2000.

http://www.mozilla.org/newlayout/faq.html (11 Nov. 2002).

Mozilla. “Our Mission.” Mozilla.org. http://www.mozilla.org/mission.html (11

Nov. 2002).

Mozilla. “Releases.” Mozilla.org. http://www.mozilla.org/releases/ (11 Nov.

2002).

Muffett, Alec. “The AberMUD1 History Site.”

http://www.users.dircon.co.uk/~crypto/abermud/amud.html (28 Jan.

2001).

“Multics History.” Multicians.org. 31 October 2000.

http://www.multicians.org/history.html (8 Aug. 2001).

Musciano, Chuck and Bill Kennedy. HTML & XHTML: The Definitive Guide.

Cambridge MA.: O’Reilly and Associates 4th edition, 2000.

Naur, Peter and Brian Randell. “Software Engineering: Report on a conference

sponsored by the NATO Science Committee.” Garmish, Germany. 7-11 Oct.

1968. http://homepages.cs.ncl.ac.uk/brian.randell/NATO/ (3 Nov. 2002).

NCSA. “About NCSA Mosaic for X.”

http://archive.ncsa.uiuc.edu/SDG/Experimental/demoweb/old/mosaic-

docs/help-about.html (29 March 2002).

“NCSA HTTPd.” NCSA. http://hoohoo.ncsa.uiuc.edu/index.html (2 Nov. 2002).

NetBSD Project. http://www.netbsd.org/ (25 Aug. 2001).

References 317

“Netcraft Web Server Survey.” Netcraft. Oct. 2002.

http://www.netcraft.com/survey/ (15 Nov. 2002).

Netscape. “America Online, Inc. Completes Acquisition of Netscape

Communications Corporation.” 17 March 1999.

http://wp.netscape.com/newsref/pr/newsrelease746.html (18 Nov. 2002).

_____. “Netscape Accelerates Communicator Evolution With First Release Of

Next-Generation Communicator Source Code To Developer Community Via

Mozilla.Org.” 31 March 1998.

http://wp.netscape.com/newsref/pr/newsrelease591.html (18 Nov. 2002).

_____. “Netscape Announces Plans To Make Next-Generation Communicator

Source Code Available Free On The Net.” 22 Jan. 1998.

http://wp.netscape.com/newsref/pr/newsrelease558.html (18 Nov. 2002).

_____. “Netscape Makes Draft of Free Source Code License Available for

Review.” 4 March 1998.

http://wp.netscape.com/newsref/pr/newsrelease579.html (18 Nov. 2002).

Norberg, Arthur L., Judy E. O’Neill and Kerry J. Freedman. Transforming

Computer Technology : Information Processing for the Pentagon, 1962-1986.

Baltimore: Johns Hopkins University Press, 1996.

Nussbacher, Henry. “Chat Analysis: A Tour-De-Force Analysis of message and

file buffers in an RSCS network.” Nethistory.com.

http://nethistory.dumbentia.com/chatan.html (6 March 2002).

References318

Oakes, Chris. “Mozilla’s First Birthday.” Wired News. 1 April 1999.

http://www.wired.com/news/technology/0,1282,18896,00.html (25 Nov.

2002).

_____. “MS: Open Source is Direct Threat.” Wired News. 2 Nov. 1998.

http://www.wired.com/news/technology/0,1282,15990,00.html (25 Nov.

2002).

Oeschger, Ian and David Boswell. “Getting Your Work Into Mozilla.” O’Reilly

Network. 9 Sept. 2000.

http://www.oreillynet.com/pub/a/mozilla/2000/09/29/keys.html (14

Nov. 2002).

Oikarinen, Jarkko. “IRC History.” IRC.org.

http://www.irc.org/history_docs/jarkko.html (16 March 2002).

Olsen, Stefanie. “Does search engine’s power threaten Web’s independence?”

CNET News. 31 Oct. 2002. http://news.com.com/2009-1023-963618.html (20

June 2003).

Open Content. “Open Publication License.” Opencontent.org. Draft v 1.0. 8 June

1999. http://www.opencontent.org/openpub/ (24 Nov. 2002).

Open Source Initiative. “History of the OSI.”

http://www.opensource.org/docs/history.php (24 Nov. 2002).

_____. “The Open Source Definition.” Version 1.9.

http://www.opensource.org/docs/definition.php (24 Nov. 2002).

References 319

Patrizio, Andy. “Unix Growth Still Outpaces Win NT.” TechWeb News. 30 Oct.

1998. http://www.techweb.com/wire/story/TWB19981029S0001 (4 Nov.

2002).

Perens, Bruce. “It’s time to talk about Free Software again.” Email. Slashdot.org. 18

Feb. 1999. http://slashdot.org/articles/99/02/18/0927202.shtml (29 Nov.

2002).

Raggett, Dave, Janny Lam, Ian Alexander and Michael Kmiec. Raggett on HTML

4. Essex, England: Addison Wesley Longman, 1998.

http://www.w3.org/People/Raggett/book4/ch02.html (March 28, 2002).

Raymond, Eric S. “A Brief History of Hackerdom.” Version 1.24.

http://www.tuxedo.org/~esr/writings/homesteading/hacker-history/ (19

Nov. 2002).

_____. “The Cathedral and the Bazaar.” Version 3.0.

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/

(19 Nov. 2002).

_____. “The Halloween Documents.” http://www.opensource.org/halloween/

(19 Nov. 2002).

_____. “Halloween I: ‘Open Source Software: A (New?) Development

Methodology?’ by Vindod Valloppillil.” Microsoft. Version 1.14 annotated by

Eric S. Raymond. http://www.opensource.org/halloween/halloween1.php

(5 Nov. 2002).

References320

_____. “Halloween II: ‘Linux OS Competitive Analysis: The Next Java VM?’ by

Vinod Valloppillil, and Josh Cohen.” Microsoft. Version 1.4 annotated by Eric

S. Raymond. http://www.opensource.org/halloween/halloween2.php (5

Nov. 2002).

_____. “Halloween IV: When Software Things Were Rotten.”

http://www.opensource.org/halloween/halloween4.php (5 Nov. 2002).

_____. “Homesteading the Noosphere.” Version 3.0.

http://www.tuxedo.org/~esr/writings/homesteading/homesteading/ (19

Nov. 2002).

_____. “How To Become a Hacker.” Version 1.15.

http://www.tuxedo.org/~esr/faqs/hacker-howto.html (19 Nov. 2002).

_____. “The Magic Cauldron.” Version 3.0.

http://www.tuxedo.org/~esr/writings/homesteading/magic-cauldron/ (19

Nov. 2002).

_____. “The New Hacker’s Dictionary.”

http://www.tuxedo.org/~esr/jargon/jargon.html (19 Nov. 2002).

_____. Personal Interview. 9 Feb. 2001.

_____. “The Revenge of the Hackers.” Open Sources: Voices from the Open Source

Revolution. eds. Chris DiBona, Sam Ockman and Mark Stone. O’Reilly, 1999.

http://www.oreilly.com/catalog/opensources/book/raymond2.html (3

Nov. 2002).

References 321

Reddick, Randy and Elliot King. The Online Student: Making the Grade on the

Internet. Fort Worth, TX: Harcourt Brace, 1996.

Redhat Linux. “What is Red Hat Linux?” Redhat.com.

http://www.redhat.com/about/whatis_rhl.html (12 Nov. 2002).

Redmond, Kent C. and Thomas M. Smith. Project Whirlwind: The History of a

Pioneer Computer. Bedford, MA.: Digital Press, 1980.

Rheingold, Howard. Tools for Thought. Prentice Hall. 1986.

http://www.rheingold.com/texts/tft/ (14 Nov. 2002).

_____. The Virtual Community: Homesteading on the Electronic Frontier. New York:

Harper Perennial, 1994.

Risan, Lars. “Hackers Produce More Than Software, They Produce Hackers.”

http://folk.uio.no/lrisan/Linux/Identity_games/ (29 Nov. 2002).

Ritchie, Dennis. “The Evolution of the Unix Time-sharing System.”

http://cm.bell-labs.com/cm/cs/who/dmr/hist.html (9 Aug. 2001).

_____. “The Unix Time-sharing System—A Retrospective.” http://cm.bell-

labs.com/cm/cs/who/dmr/retro.html (17 Aug. 2001).

Ritchie, Dennis and Thompson, Ken. “The UNIX Time-Sharing System.”

http://cm.bell-labs.com/cm/cs/who/dmr/cacm.html (10 Aug. 2001).

Robbins, Arnold. UNIX in a Nutshell: System V Edition. Cambridge MA.: O’Reilly

and Associates, 1999.

References322

Rosenberg, Scott. “Let’s Get This Straight: Microsoft’s Halloween Scare.”

Salon.com. 4 Nov. 1998.

http://dir.salon.com/21st/rose/1998/11/04straight.html (11 Nov. 2002).

Sammet, Jean E. Programming Languages: History and Fundamentals. Englewood

Cliffs, NJ: Prentice-Hall, 1969.

Schweller, Ken. “MOO Educational Tools.” High Wired: On the Design, Use, and

Theory of Educational MOOs. eds. Cynthia Haynes and Jan Rune Holmevik.

(1998) Ann Arbor: University of Michigan Press, 2nd edition 2002. 88-106.

SCO. “History of SCO.” SCO. http://www.scoinc.com/about/history.html (25

Aug. 2001).

Shields, Rob, ed. Cultures of Internet: Virtual Spaces, Real Histories, Living Bodies.

London: Sage Publications, 1996.

Slashdot. “Slashdot FAQ.” Slashdot. http://slashdot.org/faq/ (25 Nov. 2002).

_____. “Slashdot: News for nerds, stuff that matters.” Slashdot.

http://slashdot.org/ (25 Nov. 2002).

_____. “SLASH: The Slashdot Code.” Slashdot. http://slashdot.org/code.shtml

(25 Nov. 2002).

SourceForge. “About SourceForge.net.” Sourceforge.

http://sourceforge.net/docman/display_doc.php?docid=6025&group_id=1

(20 Nov. 2002).

_____. “Welcome.” Sourceforge. http://sourceforge.net/ (20 Nov. 2002).

References 323

Spufford, Francis and Jenny Uglow, eds. Cultural Babbage: Technology, Time, and

Invention. London: Faber and Faber, 1996.

Stallman, Richard M. “Apple's non-free source license.” Linux Today. 22 March

1999. http://linuxtoday.com/news_story.php3?ltsn=1999-03-22-001-05-NW-

LF (2 Nov. 2002).

_____. “The Free Software Definition.” GNU.org.

http://www.gnu.org/philosophy/free-sw.html (18 Nov. 2002).

_____. Free Software, Free Society: Selected Essays of Richard M. Stallman. ed. Joshua

Gay. Boston: MA.: Free Software Foundation, 2002.

_____. “The GNU Operating System and the Free Software Movement.” Open

Sources: Voices from the Open Source Revolution. eds. Chris DiBona, Sam

Ockman and Mark Stone. O’Reilly. 1999.

http://www.oreilly.com/catalog/opensources/book/stallman.html (28 Aug.

2001).

_____. “Initial Announcement.” GNU.org. http://www.gnu.org/gnu/initial-

announcement.html (28 Aug. 2001).

_____. “Lecture at KTH.” Royal Institute of Technology. Stockholm, Sweden. 30

Oct. 1986. http://www.fsf.org/philosophy/stallman-kth.html (30 Nov. 2002).

_____. “Why ‘Free Software’ is better than ‘Open Source’.” GNU.org.

http://www.gnu.org/philosophy/free-software-for-freedom.html (15 Nov.

2002).

References324

Stallman, Richard M. and Bradley M. Kuhn. “Freedom or Power?” GNU.org.

http://www.gnu.org/philosophy/freedom-or-power.html (15 Nov. 2002).

Staudenmaier, John M. Technology’s Storytellers: Reweaving the Human Fabric.

Cambridge, MA.: MIT Press, 1989.

Stern, Nancy. From ENIAC to UNIVAC. Bedford, MA.: Digital Press, 1981.

Stroustrup, Bjarne. “A History of C++: 1979-1991.” SIGPLAN Notices. 28.3 March

1993, 271-297.

Suárez-Potts, Lous. “Interview: Frank Hecker.” OpenOffice.org. 1 May 2001.

http://www.openoffice.org/editorial/ec1May.html (29 Nov. 2002).

Tanenbaum, Andrew. Personal FAQ. http://www.cs.vu.nl/~ast/home/faq.html

(30 Aug. 2001).

“Testimony from Netscape CEO James Barksdale.” Time.com.

http://www.time.com/time/daily/special/microsoft/documents/barksdale

/index.html (5 Nov. 2002).

Toole, Betty A., ed. Ada, The Enchantress of Numbers: A Selection from the Letters of

Lord Byron's Daughter and Her Description of the First Computer. CarTech, Inc.,

1998.

Torvalds, Linus. “Linux History.” http://www.li.org/linuxhistory.php (30 Aug.

2001).

_____. “The Linux Edge.” Open Sources: Voices from the Open Source Revolution.

eds. Chris DiBona, Sam Ockman and Mark Stone. O’Reilly, 1999.

References 325

http://www.oreilly.com/catalog/opensources/book/linus.html (30 Aug.

2001).

Torvalds, Linus and David Diamond. Just for Fun: The Story of an Accidental

Revolutionary. New York: Harper Business, 2001.

Toth, Viktor T. “MUD1 History.” MUD. 20 Sept. 2000. http://www.british-

legends.com/history.htm (27 Jan. 2001).

Turing, Alan M. “On computable numbers: With an application to the

Entscheidungsproblem.” Proceedings of the London Mathematical Society. ser. 2,

42. (1936-37). London Mathematical Society. 230-265.

Turkle, Sherry. “All MOOs are Educational—the Experience of ‘Walking through

the Self’.” High Wired: On the Design, Use, and Theory of Educational MOOs. eds.

Cynthia Haynes and Jan Rune Holmevik. Ann Arbor: University of Michigan

Press, 1998. ix-xix.

_____. Life on the Screen: Identity in the Age of the Internet. New York: Simon &

Schuster, 1995.

Undernet Public Relations Committee. “Interview Log with Jarkko Oikarinen.”

http://www.mirc.co.uk/help/jarkko2.txt (17 March 2002).

Vitanza, Victor. “Of MOOs, Folds, and Non-reactionary Virtual Communities.”

High Wired: On the Design, Use, and Theory of Educational MOOs. eds. Cynthia

Haynes and Jan Rune Holmevik. (1998) Ann Arbor, MI: University of

Michigan Press, 2nd edition 2002. 286-310.

References326

Von Neumann, John. “First Draft of a Report on the EDVAC.” Moore School of

Electrical Engineering. University of Pennsylvania. 30 June 1945.

http://www.histech.rwth-aachen.de/www/quellen/vnedvac.pdf (20 Nov.

2002).

W3C. “A Little History of the World Wide Web.”

http://www.w3.org/History.html (27 March 2002).

Welsh, Matt. “Linux Installation and Getting Started.” Ver. 1. 5. Aug. 1993.

http://www.cs.indiana.edu/usr/local/www/linux/gs/gs.html (1 Aug.

2001).

Wexelblat, Richard L. History of Programming Languages. ACM Monograph Series.

(Proceedings of the History of Programming Languages Conference, Los

Angeles, CA., 1978). New York: Academic Press, 1981.

White, Stephen. “Moospec.txt.” Apocalypse.org. 2 May 1990.

http://www.apocalypse.org/pub/u/lpb/muddex/moospec.txt (28 Jan.

2001).

Wilbur, Shawn P. “Day-to-Day MOO Administration and How to Survive It.”

High Wired: On the Design, Use, and Theory of Educational MOOs. eds. Cynthia

Haynes and Jan Rune Holmevik. (1998) Ann Arbor: University of Michigan

Press, 2nd edition 2002. 148-58.

Wiley, David A. “Open Publication License.” http://opencontent.org/openpub/

(16 June 2003).

References 327

Williams, Michael R. A History of Computing Technology. California: IEEE

Computer Society Press, 1997.

Young, Robert. “Giving It Away: How Red Hat Software Stumbled Across a New

Economic Model and Helped Improve an Industry.” Open Sources: Voices from

the Open Source Revolution. eds. Chris DiBona, Sam Ockman and Mark Stone.

O’Reilly’s, 1999. http://www.oreilly.com/catalog/opensources/ (4 Nov.

2002).

Zawinski, Jamie. “Fear and loathing on the merger trail.” Mozilla.org. 23 Nov.

1998. http://www.mozilla.org/fear.html (2 Nov. 2002).

_____. “The Netscape Dorm.” http://www.jwz.org/gruntle/nscpdorm.html (2

Nov. 2002).

_____. “Nomo zilla: Resignation and Postmortem.” 31 March 1999.

http://www.jwz.org/gruntle/nomo.html (2 Nov. 2002).

